bookingsky.ru

Повышающий преобразователь напряжения dc схема 10а. Мощный DC-DC преобразователь. Эффективность, КПД и тепловые потери

Входные напряжения до 61 В, выходные напряжения от 0.6 В, выходные токи до 4 А, возможность внешней синхронизации и настройки частоты, а также подстройки тока ограничения, подстройка времени плавного запуска, комплексные защиты нагрузки, широкий рабочий диапазон температур – все эти особенности современных источников питания достижимы при помощи новой линейки DC/DC-преобразователей производства .

В настоящий момент номенклатура микросхем импульсных регуляторов производства компании STMicro (рисунок 1) позволяет создавать источники питания (ИП) со входными напряжениями до 61 В и выходными токами до 4 А.

Задача преобразования напряжения не всегда проста. Каждое конкретное устройство предъявляет свои требования к регулятору напряжения. Иногда главную роль играет цена (потребительская электроника), габариты (портативная электроника), эффективность (устройства с батарейным питанием) или даже скорость разработки изделия. Эти требования зачастую противоречат друг другу. По этой причине не существует идеального и универсального преобразователя напряжения.

В настоящее время применяется несколько типов преобразователей: линейные (стабилизаторы напряжения), импульсные DC/DC-преобразователи, схемы с переносом заряда и даже источники питания на гальванических изоляторах.

Однако наиболее распространенными остаются линейные регуляторы напряжения и понижающие импульсные DC/DC-преобразователи. Основное отличие функционирования этих схем видно из названия. В первом случае силовой ключ работает в линейном режиме, во втором – в ключевом. Основные достоинства, недостатки и области применения этих схем приведены ниже.

Особенности работы линейного регулятора напряжения

Принцип работы линейного регулятора напряжения хорошо известен. Классический интегральный стабилизатор μA723 был разработан еще в 1967 году Р. Видларом. Несмотря на то, что электроника с тех пор ушла далеко вперед, принципы функционирования остались практически неизменными .

Стандартная схема линейного регулятора напряжения состоит из ряда основных элементов (рисунок 2): силового транзистора VT1, источника опорного напряжения (ИОН), схемы компенсационной обратной связи на операционном усилителе (ОУ). Современные регуляторы могут содержать дополнительные функциональные блоки: схемы защиты (от перегрева, от перегрузки по току), схемы управления питанием и др.

Принцип работы таких стабилизаторов достаточно прост. Схема обратной связи на ОУ сравнивает величину опорного напряжения с напряжением выходного делителя R1/R2. На выходе ОУ формируется рассогласование, определяющее напряжение «затвор-исток» силового транзистора VT1. Транзистор работает в линейном режиме: чем больше напряжение на выходе ОУ, тем меньше напряжение «затвор-исток», и тем больше сопротивление VT1.

Такая схема позволяет компенсировать все изменения входного напряжения. Действительно, предположим, что входное напряжение Uвх увеличилось. Это вызовет следующую цепочку изменений: Uвх увеличилось → Uвых увеличится → напряжение на делителе R1/R2 возрастет → выходное напряжение ОУ увеличится → напряжение «затвор-исток» уменьшится → сопротивление VT1 увеличится → Uвых уменьшится.

В результате при изменении входного напряжения выходное напряжение меняется незначительно.

При уменьшении выходного напряжения происходят обратные изменения значений напряжений.

Особенности работы понижающего DC/DC-преобразователя

Упрощенная схема классического понижающего DC/DC-преобразователя (преобразователь I типа, buck-converter, step-down converter) состоит из нескольких основных элементов (рисунок 3): силового транзистора VT1, схемы управления (СУ), фильтра (Lф-Cф), обратного диода VD1 .

В отличие от схемы линейного регулятора транзистор VT1 работает в ключевом режиме.

Цикл работы схемы состоит из двух фаз: фазы накачки и фазы разряда (рисунки 4…5).

В фазе накачки транзистор VT1 открыт и через него протекает ток (рисунок 4). Происходит запасание энергии в катушке Lф и конденсаторе Сф.

В фазе разряда транзистор закрыт, ток через него не протекает. Катушка Lф выступает в качестве источника тока. VD1 – диод, который необходим для протекания обратного тока.

В обеих фазах к нагрузке прикладывается напряжение, равное напряжению на конденсаторе Сф.

Приведенная схема обеспечивает регулирование выходного напряжения при изменении длительности импульса:

Uвых = Uвх × (tи/T)

Если величина индуктивности мала, ток разряда через индуктивность успевает достичь нуля. Такой режим называют режимом прерывистых токов. Он характеризуется увеличением пульсаций тока и напряжения на конденсаторе, что приводит к ухудшению качества выходного напряжения и росту шумов схемы. По этой причине режим прерывистых токов используется редко.

Существует разновидность схемы преобразователя, в которой «неэффективный» диод VD1 заменен на транзистор. Этот транзистор открывается в противофазе с основным транзистором VT1. Такой преобразователь называется синхронным и имеет больший КПД.

Достоинства и недостатки схем преобразования напряжений

Если бы одна из приведенных схем обладала абсолютным превосходством, то вторую бы благополучно забыли. Однако этого не происходит. Это значит, что обе схемы имеют преимущества и недостатки. Анализ схем стоит проводить по широкому кругу критериев (таблица 1).

Таблица 1. Преимущества и недостатки схем регуляторов напряжения

Характеристика Линейный регулятор Понижающий DC/DC-преобразователь
Типовой диапазон входных напряжений, В до 30 до 100
Типовой диапазон выходных токов сотни мА единицы А
КПД низкий высокий
Точность установки выходного напряжения единицы % единицы %
Стабильность выходного напряжения высокая средняя
Генерируемый шум низкий высокий
Сложность схемной реализации низкая высокая
Сложность топологии ПП низкая высокая
Стоимость низкая высокая

Электрические характеристики. Для любого преобразователя основными характеристиками являются КПД, ток нагрузки, диапазон входного и выходного напряжений.

Значение КПД для линейных регуляторов невелико и обратно пропорционально входному напряжению (рисунок 6). Это связано с тем, что все «лишнее» напряжение падает на транзисторе, работающем в линейном режиме. Мощность транзистора выделяется в виде тепла. Низкий КПД приводит к тому, что диапазон входных напряжений и выходных токов линейного регулятора относительно невелики: до 30 В и до 1 А.

КПД импульсного регулятора значительно выше и меньше зависит от входного напряжения. При этом не редкостью являются входные напряжения более 60 В и нагрузочные токи более 1 А.

Если используется схема синхронного преобразователя, в котором неэффективный обратный диод заменен транзистором, то КПД будет еще выше.

Точность и стабильность выходного напряжения. Линейные стабилизаторы могут иметь чрезвычайно высокую точность и стабильность параметров (доли процента). Зависимость выходного напряжения от изменения входного и от тока нагрузки не превышает единиц процентов.

Импульсный регулятор по принципу функционирования изначально имеет те же источники погрешности, что и линейный регулятор. Кроме того, на отклонение выходного напряжения может существенно сказываться величина протекающего тока.

Шумовые характеристики. Линейный регулятор обладает умеренной шумовой характеристикой. Существуют низкошумящие прецизионные регуляторы, используемые в высокоточной измерительной технике.

Импульсный стабилизатор сам по себе является мощным источником помех, так как силовой транзистор работает в ключевом режиме. Генерируемые помехи делятся на кондуктивные (передающиеся по линиям питания) и индуктивные (передаются через непроводящие среды).

От кондуктивных помех избавляются при помощи фильтров нижних частот. Чем выше рабочая частота преобразователя, тем проще избавиться от помех. В измерительных схемах импульсный регулятор часто используют совместно с линейным стабилизатором. В этом случае уровень помех значительно сокращается.

Избавиться от вредного воздействия индуктивных помех гораздо сложнее. Эти помехи возникают в катушке индуктивности и передаются по воздуху и непроводящим средам. Для их устранения используют экранированные индуктивности, катушки на тороидальном сердечнике. При разводке платы применяют сплошную заливку полигоном земли и/или даже выделяют отдельный слой земли в многослойных платах. Кроме того, сам импульсный преобразователь максимально удаляется от измерительных схем.

Эксплуатационные характеристики. С точки зрения простоты схемной реализации и разводки печатной платы линейные регуляторы предельно просты. Кроме самого интегрального стабилизатора требуется всего пара конденсаторов.

Импульсный преобразователь потребует как минимум внешнего L-C-фильтра. В ряде случаев требуется внешний силовой транзистор и внешний обратный диод. Это приводит к необходимости расчетов и моделирования, а топология печатной платы существенно усложняется. Дополнительное усложнение платы происходит из-за требования к ЭМС.

Стоимость. Очевидно, что в силу большого количества внешних компонентов импульсный преобразователь будет иметь большую стоимость.

В качестве вывода можно определить преимущественные области применения обоих типов преобразователей:

  • линейные регуляторы могут применяться в маломощных низковольтных схемах с высокими точностью, стабильностью и требованиями к малым уровням шумов. Примером могут быть измерительные и прецизионные схемы. Кроме того, малые габариты и низкая стоимость итогового решения могут идеально подойти для портативной электроники и бюджетных устройств.
  • импульсные регуляторы идеально подойдут для мощных низко- и высоковольтных схем в автомобильной, промышленной и бытовой электронике. Высокий КПД зачастую делает использование DC/DC безальтернативным для портативных устройств и устройств с батарейным питанием.

Иногда возникает необходимость использовать линейные регуляторы при высоких входных напряжениях. В таких случаях можно воспользоваться стабилизаторами производства компании STMicroelectronics, обладающими рабочими напряжениями более 18 В. (таблица 2).

Таблица 2. Линейные регуляторы STMicroelectronics с высоким входным напряжением

Наименование Описание Uвх макс, В Uвых ном, В Iвых ном, А Собственное
падение, В
35 5, 6, 8, 9, 10, 12, 15 0.5 2
Прецизионный регулятор на 500 мА 40 24 0.5 2
регулятор на 2 А 35 0.225 2 2
, Подстраиваемый регулятор 40 0.1; 0.5; 1.5 2
регулятор на 3 А 20 3 2
Прецизионный регулятор на 150 мА 40 0.15 3
KFxx 20 2.5: 8 0.5 0.4
Регулятор со сверхнизким собственным падением 20 2.7: 12 0.25 0.4
Регулятор на 5 А с низким собственным падением и подстройкой выходного напряжения 30 1.5; 3; 5 1.3
LExx Регулятор со сверхнизким собственным падением 20 3; 3.3; 4.5; 5; 8 0.1 0.2
Регулятор со сверхнизким собственным падением 20 3.3; 5 0.1 0.2
Регулятор со сверхнизким собственным падением 40 3.3; 5 0.1 0.25
регулятор на 85 мА с низким собственным падением 24 2.5: 3.3 0.085 0.5
Прецизионный регулятор отрицательного напряжения -35 -5; -8; -12; -15 1.5 1.1; 1.4
Регулятор отрицательного напряжения -35 -5; -8; -12; -15 0.1 1.7
Подстраиваемый регулятор отрицательного напряжения -40 1.5 2

Если принято решение о построении импульсного ИП, то следует выбрать подходящую микросхему преобразователя. Выбор осуществляется с учетом ряда основных параметров.

Основные характеристики понижающих импульсных DC/DC-преобразователей

Перечислим основные параметры импульсных преобразователей.

Диапазон входных напряжений (В). К сожалению, всегда есть ограничение не только на максимальное, но и на минимальное входное напряжение. Значение этих параметров всегда выбирается с некоторым запасом.

Диапазон выходных напряжений (В). В силу ограничения на минимальную и максимальную длительность импульса, диапазон значений выходного напряжения ограничен.

Максимальный выходной ток (А). Данный параметр ограничивается целым рядом факторов: максимальной допустимой рассеиваемой мощностью, конечным значением сопротивления силовых ключей и др.

Частота работы преобразователя (кГц). Чем выше частота преобразования, тем проще произвести фильтрацию выходного напряжения. Это позволяет бороться с помехами и снижать значения номиналов элементов внешнего L-C-фильтра, что приводит к увеличению выходных токов и к уменьшению габаритов. Однако рост частоты преобразования увеличивает потери на переключение силовых ключей и увеличивает индуктивную составляющую помех, что явно нежелательно.

КПД (%) является интегральным показателем эффективности и приводится в виде графиков для различных значений напряжений и токов.

Остальные параметры (сопротивление каналов интегральных силовых ключей (мОм), собственный ток потребления (мкА), тепловое сопротивление корпуса и др.) являются менее важными, но их также следует учитывать.

Новые преобразователи производства компании STMicroelectronics имеют высокие входное напряжение и КПД, и их параметры могут быть рассчитаны при помощи бесплатной программы eDesignSuite.

Линейка импульсных DC/DC от ST Microelectronics

Портфолио DC/DC STMicro­electro­nics постоянно расширяется. Новые микросхемы преобразователей имеют расширенный диапазон входных напряжений до 61 В ( / ), высокие выходные токи, выходные напряжения от 0.6 В ( / / ) (таблица 3).

Таблица 3. Новые DC/DC STMicroelectronics

Характеристики Наименование
L7987; L7987L
Корпус VFQFPN-10L HSOP-8; VFQFPN-8L; SO8 HSOP-8; VFQFPN-8L; SO8 HTSSOP16 VFQFPN-10L; HSOP 8 VFQFPN-10L; HSOP 8 HSOP 8 HTSSOP 16
Входное напряжение Uвх, В 4.0…18 4.0…18 4.0…18 4…38 4.5…38 4.5…38 4.5…38 4.5…61
Выходной ток, А 4 3 4 2 2 3 3 2 (L7987L); 3 (L7987)
Диапазон выходных напряжений, В 0.8…0.88×Uвх 0.8…Uвх 0.8…Uвх 0.85…Uвх 0.6…Uвх 0.6…Uвх 0.6…Uвх 0.8…Uвх
Рабочая частота, кГц 500 850 850 250…2000 250…1000 250…1000 250…1000 250…1500
Внешняя синхронизация частоты (макс), кГц нет нет нет 2000 1000 1000 1000 1500
Функции Плавный старт; защита от перегрузки по току; защита от перегрева
Дополнительные функции ENABLE; PGOOD ENABLE LNM; LCM; INHIBIT; защита от перегрузки по напряжению ENABLE PGOOD; защита от провалов напряжения; подстройка тока отсечки
Диапазон рабочих температур кристалла, °C -40…150

Все новые микросхемы импульсных преобразователей имеют функции плавного старта, защиты от перегрузки по току и перегрева.

Двухтактный генератор импульсов, в котором за счет пропорционального токового управления транзисторами существенно уменьшены потери на их переключение и повышен КПД преобразователя, собран на транзисторах VT1 и VT2 (КТ837К). Ток положительной обратной связи протекает через обмотки III и IV трансформатора Т1 и нагрузку, подключенную к конденсатору С2. Роль диодов, выпрямляющих выходное напряжение, выполняют эмиттерные переходы транзисторов.

Особенностью генератора является срыв колебаний при отсутствии нагрузки, что автоматически решает проблему управления питанием. Проще говоря, такой преобразователь будет сам включаться тогда, когда от него потребуется что-нибудь запитать, и выключаться, когда нагрузка будет отключена. То есть, батарея питания может быть постоянно подключена к схеме и практически не расходоваться при отключенной нагрузке!

При заданных входном UВx. и выходном UBыx. напряжениях и числе витков обмоток I и II (w1) необходимое число витков обмоток III и IV (w2) с достаточной точностью можно рассчитать по формуле: w2=w1 (UВых. - UBх. + 0,9)/(UВx - 0,5). Конденсаторы имеют следующие номиналы. С1: 10-100 мкф, 6.3 В. С2: 10-100 мкф, 16 В.

Транзисторы следует выбирать, ориентируясь на допустимые значения тока базы (он не должен быть меньше тока нагрузки!!! ) и обратного напряжения эмиттер - база (оно должно быть больше удвоенной разности входного и выходного напряжений!!! ) .

Модуль Чаплыгина я собрал для того, чтобы сделать устройство для подзарядки своего смартфона в походных условиях, когда смартфон нельзя зарядить от розетки 220 В. Но увы... Максимум, что удалось выжать, используя 8 батареек соединенных параллельно, это около 350-375 мА зарядного тока при 4.75 В. выходного напряжения! Хотя телефон Nokia моей жены удается подзаряжать таким устройством. Без нагрузки мой Модуль Чаплыгина выдает 7 В. при входном напряжении 1.5 В. Он собран на транзисторах КТ837К.

На фото выше изображена псевдокрона, которую я использую для питания некоторых своих устройств, требующих 9 В. Внутри корпуса от батареи Крона находится аккумулятор ААА, стерео разъем, через который он заряжается, и преобразователь Чаплыгина. Он собран на транзисторах КТ209.

Трансформатор T1 намотан на кольце 2000НМ размером К7х4х2, обе обмотки наматывают одновременно в два провода. Чтобы не повредить изоляцию об острые наружные и внутренние грани кольца притупите их, скруглив острые края наждачной бумагой. Вначале мотаются обмотки III и IV (см. схему) которые содержат по 28 витков провода диаметром 0,16мм затем, так же в два провода, обмотки I и II которые содержат по 4 витка провода диаметром 0,25мм.

Удачи и успехов всем, кто решится на повторение преобразователя! :)

LM2596 понижает входное (до 40 В) напряжение - выходное регулируется, ток 3 А. Идеален для светодиодов в машине. Очень дешёвые модули - около 40 рублей в Китае.

Компания Texas Instruments выпускает качественные, надежные, доступные и дешёвые, удобные в применении DC-DC контроллеры LM2596. Китайские заводы выпускают на её основе сверхдешёвые импульсные понижающие (stepdown) конвертеры: цена модуля на LM2596 примерно 35 рублей (вместе с доставкой). Я советую купить сразу партию в 10 штук - для них всегда найдётся применение, при этом цена опустится до 32 рублей, и меньше 30 рублей при заказе 50 штук. Подробнее о расчёте обвязки микросхемы, регулировке тока и напряжения, его применении и о некоторых минусах конвертера.

Типичный метод использования - стабилизированный источник напряжения. На основе этого стабилизатора легко сделать импульсный блок питания, я применяю её как простой и надёжный лабораторный блок питания, выдерживающий короткое замыкание. Они привлекательны постоянством качества (похоже, все они делаются на одном заводе - да и сложно сделать ошибки в пяти деталях), и полным соответствием даташиту и заявленным характеристикам.

Другая область применения - импульсный стабилизатор тока для питания мощных светодиодов . Модуль на этой микросхеме позволит вам подключить автомобильную светодиодную матрицу на 10 Ватт, дополнительно обеспечив защиту от КЗ.

Крайне рекомендую купить их десяток штук - обязательно пригодятся. Они по–своему уникальны - входное напряжение вплоть до 40 вольт, и требуется лишь 5 внешних компонентов. Это удобно - можно поднять напряжение на шине электропитания умного дома до 36 вольт, уменьшив сечение кабелей. В точках потребления ставим такой модуль и настраиваем его на нужные 12, 9, 5 вольт или сколько понадобится.

Рассмотрим их подробнее.

Характеристики микросхемы:

  • Входное напряжение - от 2.4 до 40 вольт (до 60 вольт в версии HV)
  • Выходное напряжение - фиксированное либо регулируемое (от 1.2 до 37 вольт)
  • Выходной ток - до 3 ампер (при хорошем охлаждении - до 4.5А)
  • Частота преобразования - 150кГц
  • Корпус - TO220-5 (монтаж в отверстия) либо D2PAK-5 (поверхностный монтаж)
  • КПД - 70-75% на низких напряжениях, до 95% на высоких
  1. Источник стабилизированного напряжения
  2. Схема преобразователя
  3. Даташит
  4. USB-зарядник на основе LM2596
  5. Стабилизатор тока
  6. Применение в самодельных устройствах
  7. Регулировка выходного тока и напряжения
  8. Улучшенные аналоги LM2596

История - линейные стабилизаторы

Для начала, объясню чем плохи стандартные линейные преобразователи напряжения вроде LM78XX (например 7805) или LM317. Вот его упрощённая схема.

Главный элемент такого преобразователя - мощный биполярный транзистор, включенный в своём «исконном» значении - как управляемый резистор. Этот транзистор входит в состав пары Дарлингтона (для увеличения коэффициента передачи по току и снижения мощности, необходимой на работу схемы). Базовый ток задаётся операционным усилителем, который усиливает разность между выходным напряжением и заданным с помощью ИОН (источник опорного напряжения), т.е. он включен по классической схеме усилителя ошибки.

Таким образом, преобразователь просто включает резистор последовательно с нагрузкой, и управляет его сопротивлением чтобы на нагрузке гасилось, к примеру, ровно 5 вольт. Нетрудно посчитать что при понижении напряжения с 12 вольт до 5 (очень частый случай применения микросхемы 7805) входные 12 вольт распределяются между стабилизатором и нагрузкой в отношении «7 вольт на стабилизаторе + 5 вольт на нагрузке». На токе в полампера на нагрузке выделяется 2.5 ватта, а на 7805 - целых 3.5 ватта.

Получается что «лишние» 7 вольт просто гасятся на стабилизаторе, превращаясь в тепло. Во-первых, из-за этого возникают проблемы с охлаждением, а во-вторых на это уходит много энергии из источника питания. При питании от розетки это не очень страшно (хотя всё равно наносится вред экологии), а при батарейном или аккумуляторном питании об этом нельзя не помнить.

Другая проблема - таким методом вообще невозможно сделать повышающий преобразователь. Часто такая потребность возникает, и попытки решить этот вопрос двадцать-тридцать лет назад поражают - насколько сложен был синтез и расчёт таких схем. Одна из простейших схем такого рода - двухтактный преобразователь 5В->15В.

Нужно признать, что он обеспечивает гальваническую развязку, однако он неэффективно использует трансформатор - каждый момент времени задействована лишь половина первичной обмотки.

Забудем это как страшный сон и перейдём к современной схемотехнике.

Источник напряжения

Схема

Микросхема удобна в применении в качестве step–down конвертера: мощный биполярный ключ находится внутри, осталось добавить остальные компоненты регулятора - быстрый диод, индуктивность и выходной конденсатор, также возможно поставить входной конденсатор - всего 5 деталей.

В версии LM2596ADJ также потребуется схема задания выходного напряжения, это два резистора или один переменный резистор.

Схема понижающего преобразователя напряжения на основе LM2596:

Вся схема вместе:

Здесь можно скачать даташит/datasheet на LM2596 .

Принцип работы: управляемый ШИМ–сигналом мощный ключ внутри устройства посылает импульсы напряжения на индуктивность. В точке А x% времени присутствует полное напряжение, и (1–x)% времени напряжение равно нулю. LC–фильтр сглаживает эти колебания, выделяя постоянную составляющую, равную x * напряжение питания. Диод замыкает цепь, когда транзистор выключен.

Подробное описание работы

Индуктивность противится изменению тока через неё. При появлении напряжения в точке А дроссель создаёт большое отрицательное напряжение самоиндукции, и напряжение на нагрузке становится равно разности напряжения питания и напряжения самоиндукции. Ток индуктивности и напряжение на нагрузке постепенно растут.

После пропадания напряжения в точке А дроссель стремится сохранить прежний ток, текущий из нагрузки и конденсатора, и замыкает его через диод на землю - он постепенно падает. Таким образом, напряжение на нагрузке всегда меньше входного напряжения и зависит от скважности импульсов.

Выходное напряжение

Модуль выпускается в четырёх версиях: с напряжением 3.3В (индекс –3.3), 5В (индекс –5.0), 12В (индекс –12) и регулируемая версия LM2596ADJ. Имеет смысл везде применять именно настраиваемую версию, поскольку она в большом количестве есть на складах электронных компаний и вы вряд ли столкнётесь с её дефицитом - а она требует дополнительно лишь два копеечных резистора. Ну и конечно, версия на 5 вольт тоже пользуется популярностью.

Количество на складе - в последнем столбце.

Можно сделать задание выходного напряжения в виде DIP-переключателя, хороший пример этого приведён здесь, либо в виде поворотного переключателя. В обоих случаях потребуется батарея точных резисторов - зато можно настраивать напряжение без вольтметра.

Корпус

Существует два варианта корпусов: корпус для планарного монтажа TO–263 (модель LM2596S) и корпус для монтажа в отверстия TO–220 (модель LM2596T). Я предпочитаю применять планарную версию LM2596S, поскольку в этом случае радиатором является сама плата, и отпадает необходимость покупать дополнительный внешний радиатор. К тому же её механическая стойкость гораздо выше, в отличие от TO-220, которую обязательно надо к чему–то привинчивать, хотя бы даже к плате - но тогда проще установить планарную версию. Микросхему LM2596T-ADJ я рекомендую использовать в блоках питания, потому что с её корпуса легче отвести большое количество тепла.

Сглаживание пульсаций входного напряжения

Можно использовать как эффективный «интеллектуальный» стабилизатор после выпрямления тока. Поскольку микросхема следит непосредственно за величиной выходного напряжения, колебания входного напряжения вызовут обратно пропорциональное изменение коэффициента преобразования микросхемы, и выходное напряжение останется в норме.

Из этого следует, что при использовании LM2596 в качестве понижающего преобразователя после трансформатора и выпрямителя, входной конденсатор (т.е. тот который стоит сразу после диодного моста) может иметь небольшую ёмкость (порядка 50-100мкФ).

Выходной конденсатор

Благодаря высокой частоте преобразования выходной конденсатор тоже не обязан иметь большую ёмкость. Даже мощный потребитель не успеет значительно посадить этот конденсатор за один цикл. Проведём расчёт: возьмём конденсатор в 100мкФ, 5В выходного напряжения и нагрузку, потребляющую 3 ампера. Полный заряд конденсатора q = C*U = 100e-6 мкФ * 5 В = 500e-6 мкКл.

За один цикл преобразования нагрузка заберёт из конденсатора dq = I*t = 3 А * 6.7 мкс = 20 мкКл (это всего 4% от полного заряда конденсатора), и тут же начнётся новый цикл, и преобразователь засунет в конденсатор новую порцию энергии.

Самое главное - не используйте в качестве входного и выходного конденсатора танталовые конденсаторы. У них прямо в даташитах пишут - «не использовать в цепях питания», потому что они очень плохо переносят даже кратковременные превышения напряжения, и не любят высокие импульсные токи. Используйте обычные алюминиевые электролитические конденсаторы.

Эффективность, КПД и тепловые потери

КПД не так высок, поскольку в качестве мощного ключа используется биполярный транзистор - а он имеет ненулевое падение напряжения, порядка 1.2В. Отсюда и падение эффективности при маленьких напряжениях.

Как видим, максимальная эффективность достигается при разности входного и выходного напряжений порядка 12 вольт. То есть, если нужно уменьшить напряжение на 12 вольт - в тепло уйдёт минимальное количество энергии.

Что такое эффективность преобразователя? Это величина, характеризующая токовые потери - на выделение тепла на полностью открытом мощном ключе по закону Джоуля-Ленца и на аналогичные потери при переходных процессах - когда ключ открыт, допустим, лишь наполовину. Эффекты от обоих механизмов могут быть сравнимы по величине, поэтому не нужно забывать про оба пути потерь. Небольшая мощность идёт также на питание самих «мозгов» преобразователя.

В идеальном случае, при преобразовании напряжения с U1 до U2 и выходном токе I2 выходная мощность равна P2 = U2*I2, входная мощность равна ей (идельный случай). Значит, входной ток составит I1 = U2/U1*I2.

В нашем же случае преобразование имеет эффективность ниже единицы, поэтому часть энергии останется внутри прибора. Например, при эффективности η выходная мощность составит P_out = η*P_in, а потери P_loss = P_in-P_out = P_in*(1-η) = P_out*(1-η)/η. Конечно, преобразователь вынужден будет увеличить входной ток, чтобы поддерживать заданные выходные ток и напряжение.

Можно считать, что при преобразовании 12В -> 5В и выходном токе 1А потери в микросхеме составят 1.3 ватта, а входной ток будет равен 0.52А. В любом случае это лучше любого линейного преобразователя, который даст минимум 7 ватт потерь, и потребит из входной сети (в том числе на это бесполезное дело) 1 ампер - в два раза больше.

Кстати, микросхема LM2577 имеет в три раза меньшую частоту работы, и её эффективность несколько выше, поскольку меньше потерь в переходных процессах. Однако, ей нужны в три раза более высокие номиналы дросселя и выходного конденсатора, а это лишние деньги и размер платы.

Увеличение выходного тока

Несмотря на и так довольно большой выходной ток микросхемы, иногда требуется ещё бОльший ток. Как выйти из этой ситуации?

  1. Можно запараллелить несколько преобразователей. Конечно, они должны быть настроены точно на одно и то же выходное напряжение. В таком случае нельзя обойтись простыми SMD-резисторами в цепи задания напряжения Feedback, нужно использовать либо резисторы с точностью 1%, либо вручную задавать напряжение переменным резистором.
Если нет уверенности в маленьком разбросе напряжений — лучше параллелить преобразователи через небольшой шунт, порядка нескольких десятков миллиом. Иначе вся нагрузка ляжет на плечи преобразователя с самым высоким напряжением и он может не справиться. 2. Можно использовать хорошее охлаждение — большой радиатор, многослойная печатная плата большой площади. Это даст возможность [поднять ток](/lm2596-tips-and-tricks/ "Применение LM2596 в устройствах и разводка платы") до 4.5А. 3. Наконец, можно [вынести мощный ключ](#a7) за пределы корпуса микросхемы. Это даст возможность применить полевой транзистор с очень маленьким падением напряжения, и здорово увеличит как выходной ток, так и КПД.

USB-зарядник на LM2596

Можно сделать очень удобный походный USB-зарядник. Для этого необходимо настроить регулятор на напряжение 5В, снабдить его USB-портом и обеспечить питание зарядника. Я использую купленный в Китае радиомодельный литий-полимерный аккумулятор, обеспечивающий 5 ампер-часов при напряжении 11.1 вольта. Это очень много - достаточно для того чтобы 8 раз зарядить обычный смартфон (не учитывая КПД). С учётом КПД получится не меньше 6 раз.

Не забудьте замкнуть контакты D+ и D- гнезда USB, чтобы сообщить телефону что он подключен к заряднику, и передаваемый ток неограничен. Без этого мероприятия телефон будет думать, что он подключен к компьютеру, и будет заряжаться током в 500мА - очень долго. Более того, такой ток может даже не скомпенсировать ток потребления телефона, и аккумулятор вовсе не будет заряжаться.

Также можно предусмотреть отдельный вход 12В от автомобильного аккумулятора с разъёмом прикуривателя - и переключать источники каким-либо переключателем. Советую установить светодиод, который будет сигнализировать что устройство включено, чтобы не забыть выключить батарею после полной зарядки - иначе потери в преобразователе полностью посадят резервную батарею за несколько дней.

Такой аккумулятор не слишком подходит, потому что он рассчитан на высокие токи - можно попробовать найти менее сильноточную батарею, и она будет иметь меньшие размеры и вес.

Стабилизатор тока

Регулировка выходного тока

Возможна только в версии с настраиваемым выходным напряжением (LM2596ADJ). Кстати, китайцы делают и такую версию платы, с регулировкой напряжения, тока и всевозможной индикацией - готовый модуль стабилизатора тока на LM2596 с защитой от КЗ, можно купить под названием xw026fr4.

Если вы не хотите применять готовый модуль, и желаете сделать эту схему самостоятельно - ничего сложного, за одним исключением: у микросхемы нет возможности управления током, однако её можно добавить. Я объясню, как это сделать, и попутно разъясню сложные моменты.

Применение

Стабилизатор тока - штука, нужная для питания мощных светодиодов (кстати - мой проект микроконтроллерного драйвера мощного светодиода ), лазерных диодов, гальваники, заряда аккумуляторов. Как и в случае со стабилизаторами напряжения, есть два типа таких устройств - линейный и импульсный.

Классический линейный стабилизатор тока - это LM317, и он вполне хорош в своём классе - но его предельный ток 1.5А, для многих мощных светодиодов этого недостаточно. Даже если умощнить этот стабилизатор внешним транзистором - потери на нём просто неприемлемы. Весь мир катит бочку на энергопотребление лампочек дежурного питания, а тут LM317 работает с КПД 30% Это не наш метод.

А вот наша микросхема - удобный драйвер импульсного преобразователя напряжения, имеющий много режимов работы. Потери минимальны, поскольку не применяется никаких линейных режимов работы транзисторов, только ключевые.

Изначально она предназначалась для схем стабилизации напряжения, однако несколько элементов превращают её в стабилизатор тока. Дело в том, что микросхема всецело полагается на сигнал «Feedback» в качестве обратной связи, а вот что на него подавать - это уже наше дело.

В стандартной схеме включения на эту ногу подаётся напряжение с резистивного делителя выходного напряжения. 1.2В - это равновесие, если Feedback меньше - драйвер увеличивает скважность импульсов, если больше - уменьшает. Но ведь можно на этот вход подать напряжение с токового шунта!

Шунт

Например, на токе 3А нужно взять шунт номиналом не более 0.1Ом. На таком сопротивлении этот ток выделит около 1Вт, так что и это много. Лучше запараллелить три таких шунта, получив сопротивление 0.033Ом, падение напряжения 0.1В и выделение тепла 0.3Вт.

Однако, вход Feedback требует напряжение 1.2В - а мы имеем лишь 0.1В. Ставить бОльшее сопротивление нерационально (тепла будет выделяться в 150 раз больше), поэтому остаётся как-то увеличить это напряжение. Делается это с помощью операционного усилителя.

Неинвертирующий усилитель на ОУ

Классическая схема, что может быть проще?

Объединяем

Теперь объединяем обычную схему преобразователя напряжения и усилитель на ОУ LM358, к входу которого подключаем токовый шунт.

Мощный резистор 0.033 Ом - это и есть шунт. Его можно сделать из трёх резисторов 0.1 Ом, соединённых параллельно, а для увеличения допустимой рассеиваемой мощности - используйте SMD-резисторы в корпусе 1206, поставьте их с небольшим промежутком (не вплотную) и постарайтесь максимально оставить слой меди вокруг резисторов и под ними. На выход Feedback подключен небольшой конденсатор, чтобы устранить возможный переход в режим генератора.

Регулируем и ток и напряжение

Давайте заведём на вход Feedback оба сигнала - и ток, и напряжение. Для объединения этих сигналов воспользуемся обычной схемой монтажного «И» на диодах. Если сигнал тока выше сигнала напряжения - он будет доминировать и наоборот.

Пару слов о применимости схемы

Вы не можете регулировать выходное напряжение. Хотя невозможно регулировать одновременно и выходной ток, и напряжение - они пропорциональны друг другу, с коэффициентом «сопротивление нагрузки». А если блок питания реализует сценарий вроде «постоянное выходное напряжение, но при превышении тока начинаем уменьшать напряжение», т.е. CC/CV - то это уже зарядное устройство.

Максимальное напряжение питания схемы - 30В, поскольку это предел для LM358. Можно расширить этот предел до 40В (или 60В с версией LM2596-HV), если питать ОУ от стабилитрона.

В последнем варианте в качестве суммирующих диодов необходимо использовать диодную сборку, поскольку в ней оба диода сделаны в рамках одного технологического процесса и на одной пластине кремния. Разброс их параметров будет гораздо меньше разброса параметров отдельных дискретных диодов - благодаря этому мы получим высокую точность отслеживания значений.

Также нужно внимательно следить за тем, чтобы схема на ОУ не возбудилась и не перешла в режим генерации. Для этого старайтесь уменьшить длину всех проводников, а особенно дорожки, подключенной к 2 выводу LM2596. Не располагайте ОУ вблизи этой дорожки, а диод SS36 и конденсатор фильтра расположите ближе к корпусу LM2596, и обеспечьте минимальную площадь петли земли, подключенной к этим элементам - необходимо обеспечить минимальную длину пути возвратного тока «LM2596 -> VD/C -> LM2596″.

Применение LM2596 в устройствах и самостоятельная разводка платы

О применении микросхемы в своих устройствах не в виде готового модуля я подробно рассказал в другой статье , в которой рассмотрены: выбор диода, конденсаторов, параметров дросселя, а также рассказал про правильную разводку и несколько дополнительных хитростей.

Возможности дальнейшего развития

Улучшенные аналоги LM2596

Проще всего после этой микросхемы перейти на LM2678 . По сути - это тот же самый stepdown преобразователь, только с полевым транзистором, благодаря которому КПД поднимается до 92%. Правда, у него 7 ног вместо 5, и он не pin-to-pin совместимый. Тем не менее эта микросхема очень похожа, и будет простым и удобным вариантом с улучшенной эффективностью.

L5973D – довольно старая микросхема, обеспечивающая до 2.5А, и немного более высокий КПД. Также у неё почти в два раза выше частота преобразования (250 кГц) - следовательно, требуются меньшие номиналы индуктивности и конденсатора. Однако, я видел что с ней происходит, если поставить её напрямую в автомобильную сеть - довольно часто выбивает помехами.

ST1S10 - высокоэффективный (КПД 90%) DC–DC stepdown преобразователь.

  • Требует 5–6 внешних компонентов;

ST1S14 - высоковольтный (до 48 вольт) контроллер. Большая частота работы (850 кГц), выходной ток до 4А, выход Power Good, высокий КПД (не хуже 85%) и схема защиты от превышения тока нагрузки делают его, наверное, лучшим преобразователем для питания сервера от 36–вольтового источника.

Если требуется максимальный КПД - придётся обращаться к неинтегрированным stepdown DC–DC контроллерам. Проблема интегрированных контроллеров в том, что в них никогда не бывает классных силовых транзисторов - типичное сопротивление канала не выше 200мОм. Однако если взять контроллер без встроенного транзистора - можно выбрать любой транзистор, хоть AUIRFS8409–7P с сопротивлением канала в пол–миллиома

DC-DC преобразователи с внешним транзистором

Следующая часть

Сегодня мы рассмотрим несколько схем несложных, даже можно сказать - простых, импульсных преобразователей напряжения DC-DC (преобразователей постоянного напряжения одной величины, в постоянное напряжение другой величины)

Чем хороши импульсные преобразователи. Во-первых, они имеют высокий КПД, и во-вторых могут работать при входном напряжении ниже выходного. Импульсные преобразователи подразделяются на группы:

  • - понижающие, повышающие, инвертирующие;
  • - стабилизированные, нестабилизированные;
  • - гальванически изолированные, неизолированные;
  • - с узким и широким диапазоном входных напряжений.

Для изготовления самодельных импульсных преобразователей лучше всего использовать специализированные интегральные микросхемы - они проще в сборке и не капризны при настройке. Итак, приводим для ознакомления 14 схем на любой вкус:

Этот преобразователь работает на частоте 50 кГц, гальваническая изоляция обеспечивается трансформатором Т1, который наматывается на кольце К10х6х4,5 из феррита 2000НМ и содержит: первичная обмотка - 2х10 витков, вторичная обмотка - 2х70 витков провода ПЭВ-0,2. Транзисторы можно заменить на КТ501Б. Ток от батареи, при отсутствии нагрузки, практически не потребляется.

Трансформатор Т1 наматывается на ферритовом кольце диаметром 7 мм, и содержит две обмотки по 25 витков провода ПЭВ=0,3.


Двухтактный нестабилизированный преобразователь на основе мультивибратора (VТ1 и VТ2) и усилителя мощности (VТ3 и VТ4). Выходное напряжение подбирается количеством витков вторичной обмотки импульсного трансформатора Т1.

Преобразователь стабилизирующего типа на микросхеме MAX631 фирмы MAXIM. Частота генерации 40…50 кГц, накопительный элемент - дроссель L1.


Можно использовать одну из двух микросхем отдельно, например вторую, для умножения напряжения от двух аккумуляторов.

Типовая схема включения импульсного повышающего стабилизатора на микросхеме MAX1674 фирмы MAXIM. Работоспособность сохраняется при входном напряжении 1,1 вольта. КПД - 94%, ток нагрузки - до 200 мА.

Позволяет получать два разных стабилизированных напряжения с КПД 50…60% и током нагрузки до 150 мА в каждом канале. Конденсаторы С2 и С3 - накопители энергии.

8. Импульсный повышающий стабилизатор на микросхеме MAX1724EZK33 фирмы MAXIM

Типовая схема включения специализированной микросхемы фирмы MAXIM. Сохраняет работоспособность при входном напряжении 0,91 вольта, имеет малогабаритный SMD корпус и обеспечивает ток нагрузки до 150 мА при КПД - 90%.

Типовая схема включения импульсного понижающего стабилизатора на широкодоступной микросхеме фирмы TEXAS. Резистором R3 регулируется выходное напряжение в пределах +2,8…+5 вольт. Резистором R1 задается ток короткого замыкания, который вычисляется по формуле: Iкз(А)= 0,5/R1(Ом)

Интегральный инвертор напряжения, КПД - 98%.

Два изолированных преобразователя напряжения DA1 и DA2, включенных по “неизолированной” схеме с общей “землей”.

Индуктивность первичной обмотки трансформатора Т1 - 22 мкГн, отношение витков первичной обмотки к каждой вторичной - 1:2.5.

Типовая схема стабилизированного повышающего преобразователя на микросхеме фирмы MAXIM.

Простые схемы импульсных преобразователей постоянного напряжения для питания радиолюбительских устройств

Доброго дня уважаемые радиолюбители!
Сегодня на сайте “ “ мы рассмотрим несколько схем несложных, даже можно сказать – простых, импульсных преобразователей напряжения DC-DC (преобразователей постоянного напряжения одной величины, в постоянное напряжение другой величины)

Чем хороши импульсные преобразователи. Во-первых, они имеют высокий КПД, и во-вторых могут работать при входном напряжении ниже выходного.
Импульсные преобразователи подразделяются на группы:
– понижающие, повышающие, инвертирующие;
– стабилизированные, нестабилизированные;
– гальванически изолированные, неизолированные;
– с узким и широким диапазоном входных напряжений.
Для изготовления самодельных импульсных преобразователей лучше всего использовать специализированные интегральные микросхемы – они проще в сборке и не капризны при настройке.

Первая схема.
Нестабилизированный транзисторный преобразователь:
Этот преобразователь работает на частоте 50 кГц, гальваническая изоляция обеспечивается трансформатором Т1, который наматывается на кольце К10х6х4,5 из феррита 2000НМ и содержит: первичная обмотка – 2х10 витков, вторичная обмотка – 2х70 витков провода ПЭВ-0,2. Транзисторы можно заменить на КТ501Б. Ток от батареи, при отсутствии нагрузки, практически не потребляется.

Вторая схема.

Трансформатор Т1 наматывается на ферритовом кольце диаметром 7 мм, и содержит две обмотки по 25 витков провода ПЭВ=0,3.

Третья схема.
:

Двухтактный нестабилизированный преобразователь на основе мультивибратора (VТ1 и VТ2) и усилителя мощности (VТ3 и VТ4). Выходное напряжение подбирается количеством витков вторичной обмотки импульсного трансформатора Т1.

Четвертая схема.
Преобразователь на специализированной микросхеме:
Преобразователь стабилизирующего типа на специализированной микросхеме фирмы MAXIM. Частота генерации 40…50 кГц, накопительный элемент – дроссель L1.

Пятая схема.
Нестабилизированный двухступенчатый умножитель напряжения:

Можно использовать одну из двух микросхем отдельно, например вторую, для умножения напряжения от двух аккумуляторов.

Шестая схема.
Импульсный повышающий стабилизатор на микросхеме фирмы MAXIM:
Типовая схема включения импульсного повышающего стабилизатора на микросхеме фирмы MAXIM. Работоспособность сохраняется при входном напряжении 1,1 вольта. КПД – 94%, ток нагрузки – до 200 мА.

Седьмая схема.
Два напряжения от одного источника питания :
Позволяет получать два разных стабилизированных напряжения с КПД 50…60% и током нагрузки до 150 мА в каждом канале. Конденсаторы С2 и С3 – накопители энергии.

Восьмая схема.
Импульсный повышающий стабилизатор на микросхеме-2 фирмы MAXIM:
Типовая схема включения специализированной микросхемы фирмы MAXIM. Сохраняет работоспособность при входном напряжении 0,91 вольта, имеет малогабаритный SMD корпус и обеспечивает ток нагрузки до 150 мА при КПД – 90%.

Девятая схема.
Импульсный понижающий стабилизатор на микросхеме фирмы TEXAS:

Типовая схема включения импульсного понижающего стабилизатора на широкодоступной микросхеме фирмы TEXAS. Резистором R3 регулируется выходное напряжение в пределах +2,8…+5 вольт. Резистором R1 задается ток короткого замыкания, который вычисляется по формуле:
Iкз(А)= 0,5/R1(Ом)

Десятая схема.
Интегральный инвертор напряжения на микросхеме фирмы MAXIM:
Интегральный инвертор напряжения, КПД – 98%.

Одиннадцатая схема.
Два изолированных преобразователя на микросхемах фирмы YCL Elektronics:
Два изолированных преобразователя напряжения DA1 и DA2, включенных по “неизолированной” схеме с общей “землей”.

Загрузка...