bookingsky.ru

Приборы для поиска пустот. Портативный прибор для обнаружения индустриальных электрических помех. Как работает георадар

Вопрос об использовании георадара в поисковой деятельности периодически всплывает в кладоискательской тусовке. Причем чем меньше остается невыбитых мест, тем чаще обсуждается этот вопрос. Понятно, что радар «видит» гораздо глубже, чем любой металлодетектор, даже самый навороченный, поэтому может обеспечить поисковику допольнительные находки. При этом работа с радаром требует специльной подготовки, умения, понимания. В итоге КПД георадара может оказаться совсем не таким, как ожидает тот или иной поисковик. Чтобы на личном опыте понять все плюсы и минусы использования георадара, редакция «Кладоискателя» приняла участие в рейде по поиску подземного хода.

Как работает георадар?

Прежде чем отправиться на поиски подземного хода, я постарался в общих чертах понять принцип действия георадара. Кое-какую информацию мне сообщили его владельцы - уже известный по прошлым публикациям в газете «Кладоискатель» Анатолий и его коллега Сергей; кое-что я прочитал в Интернете на сайтах производителей георадаров.

В принципе, ничего непонятного в работе георадара я не нашел. По сути, он работает так же, как и обычный металлодетектор. Вот как описывает принцип работы георадара один из производителей.

«Георадар состоит из трех основных частей: антенной части, блока регистрации и блока управления. Антенная часть включает передающую и приемную антенны. Под блоком регистрации понимается ноутбук или другое записывающее устройство, а роль блока управления выполняет система кабелей и оптико-электрических преобразователей. В изучаемую среду излучается электромагнитная волна, которая отражается от разделов сред и различных включений. Отраженный сигнал принимается и записывается георадаром».

Далее отраженный сигнал обрабатывается компьютером, который, в свою очередь, рисует так называемые профили - срезы того пространства, которое радар сканировал. Из этих профилей становится понятно, есть что-то под землей или нет, каковы слои залегания разных почв и пород, а также исходит много другой интересной информации. Все поисковики, которым довелось работать с георадаром, сходятся на том, что необходим определенный навык, чтобы правильно эту информацию интерпретировать.

Применений у георадара множество. Кладоискателю он интересен для поиска неметаллических объектов: фундаментов зданий, скрытых под землей, подземных ходов, погребов и других пустот, а также он вполне может обнаружить, например, сундук, зарытый на глубине нескольких метров.


Выбор модели

Прежде чем приобретать георадар, нужно определиться, зачем он вам нужен: что вы намерены искать - клады, подземные ходы, античные города? Исходя из этого необходимо выбрать как сам георадар (например, очень многое зависит от того, какая у него рабочая частота), так и подобрать к нему программное обеспечение.

«Мы взяли радар прежде всего для того, чтобы искать пустоты - погреба, подземные ходы» - так определил задачу своих поисков Анатолий. Соответственно, он со своим коллегой Сергеем остановил свой выбор на отечественном георадаре ОКО (который достаточно приемлем по цене, по сравнению со своими заморскими аналогами), укомплектованном антенной с рабочей частотой 400 МГц.

Это средний вариант частоты. Высокочастотные антенные блоки с частотой 900-1700 МГц исследуют поверхность на глубину не более менее двух метров, но при этом имеют высокую разрешающую способность, то есть вполне способны различить даже отдельно взятую крупную монету. Низкочастотные антенны с частотой зондирующего импульса 25-150 МГц видят очень глубоко, но характер цели различить практически не могут - они применяются, как правило, для глобальных работ, например по оценке мощности месторождений.

Георадар - вещь недешевая, но, чтобы успешно с ним работать, необходимо предусмотреть и некоторые дополнительные траты. Например, расходы на обучение. У многих компаний-производителей существует собственный обучающий полигон, на котором счастливому покупателю георадара объясняют азы работы с прибором. Обучение занимает несколько дней и стоит порядка 25 тысяч рублей.

Подземный город

В качестве площадки для поиска подземного хода была выбрана центральная часть Иркутска. В городе ходит множество легенд о том, что еще в царское время местные купцы буквально изрыли подземными лабиринтами все городское пространство. Периодически в городе случаются провалы, однако исследовать их никогда толком не удается - ремонтники оперативно зарывают дырку до того, как удается ее полностью обследовать.

Иногда провалы открывают достаточно любопытные вещи: сводчатые потолки, фрагменты лестниц. Однако нельзя с достоверностью утверждать, что это части подземных ходов, а не отдельный подвал или склад.

Самые живучие иркутские легенды следующие:

1. Под главной улицей города (сейчас она носит имя Карла Маркса) по всей ее длине шел подземный ход - от пристани на берегу Ангары к дому каждого купца для тайного подвоза товаров.

2. Подземный ход связывал кафедральный собор в центре Иркутска (сейчас на его месте находится здание областного правительства), близлежащие здания и берег Ангары.

3. Подземный ход проходил от железнодорожного вокзала под дном Ангары в правобережную часть Иркутска.

Каждая из этих легенд имеет множество сторонников, и у каждого сторонника, в свою очередь, есть куча подтверждений этой легенды.

Одним из тех, кто уверен в существовании подземных ходов, является депутат городской думы Иркутска Юрий Коренев. Он даже написал и издал книгу о подземном городе.

! «На мысль о существовании подземных ходов меня навели случаи из реальной жизни. В Иркутске бывали провалы асфальта на дорогах, в которые попадали автомобили. При проведении строительных работ из-под земли доставали старинные предметы. Помимо этого, упоминания о подземном городе есть в летописях города, автором которых является известный исследователь Нит Романов».

Неудивительно, что Юрий Коренев принял деятельное участие в рейде по городским подземельям с использованием георадара.

Школьные подземелья Первым объектом исследования стала средняя школа № 11. Она расположена в центральной части города. Основной корпус был построен в 1915 году, пристрой - в 30-х годах прошлого века. Старожилы говорят, что на месте школы когда-то стояли другие здания. Еще не так давно на том месте, где сейчас школьный двор, находились купеческие постройки. Более того, при сносе этих зданий люди видели сводчатые погреба, практически сразу засыпанные строителями.

Шесть лет назад в школе был ремонт. При вскрытии правого крыла были обнаружены подземные помещения. Вот как писала о происшествии иркутская газета «СМ Номер один»:

! «Подземный лаз обнаружили строители в школе №11, где сейчас проводится капитальный ремонт. По словам строителей, у одной из стен здания вырыли яму, чтобы взять фрагменты фундамента на экспертизу, и обнаружили какие-то ступени и пустоту. Правда, как уверяют строители, никто туда не лазил. И что там находится, они не знают. В яме рабочие нашли кости, которые, как выяснилось позже, были человеческими. Как они там оказались и сколько времени пролежали, никто не знает. Находку забрали эксперты из УВД. Пока пустоту строители не трогают - решили осмотреть ее позже, когда будут проводить возле нее ремонтные работы. Яма сейчас огорожена, чтобы туда случайно никто не упал».

Затем эту историю замяли. Таинственный лаз мешал работам, поэтому ступени выломали и выкинули, а дыру засыпали грунтом. Судьба костей также осталась для широкой общественности неизвестна. По иронии судьбы над таинственной подземной комнатой после ремонта оказался школьный туалет.

О лазе вспомнили сразу после Нового года. В кабинете начальных классов стал проваливаться пол. Первоклашек перевели в другой кабинет, а в на месте провала начались ремонтные работы. Этот инцидент случился по соседству с туалетом - тем самым, где был засыпан таинственный лаз. Туда и отправилась наша поисковая бригада: депутат Юрий Коренев, Сергей и Анатолий с георадаром, ну и я, вооруженный фотоаппаратом, блокнотом и металлоискателем с шестидюймовой катушкой.

Пол уже залили бетоном, и, как сказал строитель, буквально на днях его начнут закрывать половицами, уже выставили кирпичные направляющие. Но бетон - не преграда для георадара. Сергей медленно, с интервалом примерно 40-50 сантиметров, стал просвечивать площадку. Сначала вдоль несущей стены здания, затем поперек.

Это для того, чтобы получить более полную информацию о сканируемом пространстве, - объяснил он. - Сканы-профили не дают полного понимания того, что находится под землей. Например, можно пройти точно над трубой вдоль всей ее длины, и полученный профиль вообще даст обманчивое представление о подземной структуре. Поэтому, чтобы получить объективную картину, необходима сетка сканов.

На приборе установлена штатная программа, пояснил Сергей. Она достаточно простая и не дает возможности воссоздать трехмерное изображение. Специалист просто сравнивает поперечные и продольные сканы и выдает результаты разведки. Однако, существуют более продвинутые программы, которые самостоятельно форматируют профильные сканы в трехмерную картинку. - Универсальной программы для георадара, которая подходила бы для всех задач, пока не существует, - резюмировал Анатолий. - Каждая программа георадара на что-то рассчитана: какая-то - на геологические работы, какая-то - для поиска коммуникаций, какая-то - на обнаружение пустот. Поэтому при выборе программы для георадара важно понимать, какие задачи вы будете перед собой ставить. Дворец пионеров

Следующим пунктом наших исследований стал Дворец детского и юношеского творчества, расположеннный в квартале от школы № 11. Здание построено в псевдорусском стиле в самом конце XIX века. До революции здесь был особняк купца Второва, потом - музей революции, с 1937 года - Дворец пионеров. По легенде, дом купца Второва соединялся подземным ходом с домом купца Файнберга. Особняки расположены примерно в двухстах метрах друг от друга.

Усилиями депутата Юрия Коренева нас пустили в подвал Дворца детского и юношеского творчества. Там нас ждали реальные раритеты: гипсовая пионерка, отдающая салют, и статуя дедушки Ленина очень даже приличных размеров. Кроме того, было много всякого хлама, который реально мешал работать.

Судя по всему, раньше здесь были купеческие склады. Однако это вовсе не отрицало существования подземного хода, и Сергей принялся за сканирование помещения - сначала вдоль, а потом и поперек. Поскольку в некоторых местах половые доски прогнили и провалились, я решил просветить пол, а особенно провалы металлоискателем, хотя и понимал, что шансов на какой-то результат крайне мало - доски были подогнаны крайне тщательно. Так и вышло: прибор безмолствовал, лишь реагировал бодрыми трелями на стоявшие возле стен железяки. Результаты поисков

На следующий день я поинтересовался у Анатолия, каковы результаты расшифровки профильных сканов. А результаты оказались следующими:

1. По школе - ничего не найдено.

2. По Дворцу пионеров - обнаружена некая полость, чем-то засыпанная. Чем и когда - определить по существующим данным невозможно. Не совсем ясен и характер полости: то ли это еще один подвал, расположенный глубже общего уровня, то ли это фрагмент подземного хода. Необходимы дополнительные исследования, в частности по периметру здания, чтобы было понятно, выходит ли полость за границы фундамента.

Если и эти замеры покажут наличие подземной полости, депутат Юрий Коренев намерен выйти на администрацию города Иркутска с просьбой о проведении земляных работ.

Для поиска тайников в строительных конструкциях из кирпича и бетона при одностороннем доступе предназначен прибор "Кайма".

Принцип действия прибора основан на регистрации частично отраженной от границ раздела двух сред радиоволны, излучаемой передающей антенной. В приемном устройстве, состоящем из приемной антенны и усилителя, отраженный сигнал обрабатывается и передается на звуковой и стрелочный индикаторы.

Прибор состоит из блока обработки и связанного с ним датчика. Массаприбора составляет не более 1,6 кг.

Дальность обнаружения внутренних полостей в зависимости от их размера составляет до 250 мм. При этом не имеет значения степень заполнения полости различными вложениями.

Скорость сканирования при работе с прибором должна составлять от 5 до 15 см/с. Датчик во время поиска должен плотно и без перекосов прилегать к стене.

Другим прибором, обеспечивающим обнаружение тайников, является прибор "Жасмин", в комплект которого дополнительно входит устройство для сверления и эндоскоп для осмотра содержимого полости.

В приборе используется импульсный метод зондирования и регистрируется сигнал, отраженный от стенок тайников, который задерживается по времени относительно зондирующего импульса. Путем измерения времени задержки можно оценить расстояние до источника сигнала.

Прибор "Жасмин" предпочтительно использовать для больших по габаритам и глубине залегания тайников. С его помощью можно обнаруживать внутренние полости: в глиняных и песчаных грунтах - на глубине до 500 мм; в кирпичных стенах - на глубине до 400 мм; в бетонных стенах - на глубине до 200 мм.

Приборы для поиска и идентификации взрывчатых

И наркотических веществ

Все взрывчатые вещества (ВВ) имеют специфический запах. Одни, как, например, нитроглицерин пахнут очень сильно, другие, как тротил, - значительно слабее, а некоторые, в частности, пластиды - очень слабо. Тем не менее, все эти ВВ обнаруживают, по крайней мере, с использованием служебно-розыскных собак.

Современные газоанализаторы , являющиеся своеобразной моделью “собачьего носа”, тоже могут делать это, правда не столь эффективно в отношении пластидов.

Отечественные газоанализаторы типа МО2 по своим эксплуатационным характеристикам не уступают лучшим зарубежным образцам. Реализуемая на практике их чувствительность (порядка 10 -13...-14 г/см 3 по ТНТ) позволяет надежно фиксировать штатные ВВ типа тротила, гексогена и др. Правда, все подобные приборы достаточно дорогостоящие.

Принцип действия таких приборов основан на методах газовой хроматографии и дрейфспектрометрии ионов.

Хроматографические детекторы паров взрывчатых и наркотических веществ требуют применения высокочистых газов-носителей (аргон, азот), что создает определенные неудобства в процессе эксплуатации этих приборов. Оригинально решена эта проблема в детекторе Egis фирмы Thermedics (США): газ-носитель водород получается в самом приборе путем электрохимического разложения воды.

В дрейфспектрометрических детекторах основу газа-носителя составляет воздух.

Важным технологическим звеном в процессе обнаружения взрывчатых и наркотических веществ является пробоотбор. Пробоотборник - это, в сущности, малогабаритный пылесос, который задерживает пары и частицы веществ на сорбирующих поверхностях или в фильтре (концентратор). Бумажный фильтр можно использовать и для взятия мазков с поверхности контролируемого предмета. Затем, в процессе нагрева происходит десорбция веществ из концентратора и парообразная фракция подвергается анализу.

Достаточно трудной задачей является обнаружение слаболетучих взрывчатых веществ, входящих в состав пластиковой взрывчатки, однако приборы последнего поколения успешно справляются и с ней.

Следует отметить, что в сочетании с газоанализатором целесообразно использовать сравнительно недорогой химический комплект для экспресс-анализа следовых количеств взрывчатых и наркотических веществ.

Анализаторы следов ВВ относятся к классу сравнительно недорогих средств для экспресс-выявления следов взрывчатых веществ на поверхности предметов. Используется принцип так называемой жидкостной хроматографии.

Следы ВВ изменяют окраску действующего на них химического реагента. Устройство компактно, просто в обращении. Реализованная на практике чувствительность порядка 10 -8...-9 г/см 3 по ТНТ и 10 -6...-7 г/см 3 по гексогену, оксогену и тетрилу. Средство незаменимо в полевых условиях.

Ядерно-физические приборы - сложные и сравнительно дорогие устройства, позволяющие выявить ВВ по наличию в них водорода и азота, способны обнаружить ВВ в разнообразных условиях, в том числе и за преградой.

Наибольший пользовательский интерес представляют нейтронные дефектоскопы . Они выявляют ВВ как объект с повышенным содержанием водорода. Для этого используется слабый источник нейтронов, которые, попадая на ВВ, рассеиваются на атомах водорода и регистрируются приемником. Отечественные нейтронные дефектоскопы типа “Исток-Н” имеют высокую производительность и конструктивно реализованы в портативном варианте.

Одним из наиболее ярких представителей приборов обнаружения и идентификации наркотических и взрывчатых веществ (НВ и ВВ) является прибор ITEMIZER , изготовленный фирмой Ion Track Instrument (Великобритания) и успешно применяемый в Калининградской региональной таможенной лаборатории для проведения экспертиз НВ и ВВ, а также в Калининградской оперативной таможне для проведения скрытых оперативных мероприятий.

С помощью данного прибора можно успешно проводить проверку и поиск следов НВ и ВВ, которые в случае их присутствия неизбежно имеются на поверхностях багажа, автомобилей, транспортных упаковок и контейнеров. Любая поверхность, с которой соприкасался контрабандный товар, может быть проверена.

Прибор в течение 30 секунд переключается из режима обнаружения НВ на режим обнаружения ВВ. Анализатор, встроенный сенсорный экран, принтер и блок испарения-десорбции собраны в одном корпусе и образуют легко транспортируемый прибор небольшого веса. Органы управления и визуального контроля выведены на панель сенсорного экрана.

В случае обнаружения контрабанды на экране мигает сигнал тревоги, вещество идентифицируется, раздается звуковой сигнал и все полученные результаты печатаются на специальной ленте встроенным принтером с указанием даты и времени.

Отбор пробы производится путем протирки исследуемой поверхности бумажным фильтром или при помощи блока дистанционного взятия проб (автономного ручного микропылесоса, в который вставляется бумажный фильтр). В каждом случае фильтр с пробой помещается в блок испарения-десорбции для проведения автоматического анализа. Присутствие или отсутствие контрабанды прибор подтверждает в течение 8 секунд, что позволяет обрабатывать достаточно большое количество проб ежесуточно.

Архив (библиотека) компьютера прибора включает в себя программу идентификации до 40 типов НВ и ВВ, а также может подвергаться изменению и дополнению. Кроме того, в результате сравнения плазмограмм одного и того же вещества, имеется возможность определения места производства исследуемого вещества, при условии наличия архивных данных по данному веществу.

Основные технические параметры прибора ITEMIZER:

1. Чувствительность: не более 200 пикограмм НВ и ВВ.

2. Вероятность ложной тревоги при взятии проб:

С поверхности - 1%;

С воздуха - 0,1%.

3. Время подготовки к работе - до 50 минут.

4. Электропитание: 220 В, 50 Гц.

Для проведения досмотрово-поисковых мероприятий целесообразно использовать портативный переносной аналог данного прибора - VaporTracer. Основанный на технологии спектрометрии мобильности захваченных ионов, этот ручной детектор разработан для использования в местах. где требуется повышенная безопасность, где необходимо проводить быстрый и точный досмотр. Оператор направляет сопло детектора на досматриваемый объект и нажимает активатор. Проба моментально попадает в детектор и анализируется. Весь процесс занимает несколько секунд.

Прибор весит менее 4 кг и способен обнаруживать и идентифицировать крайне малое количество НВ и ВВ. Система работает, забирая пробу пара в детектор, где она нагревается, ионизируется, а затем идентифицируется, показывая результаты на уникальной плазмограмме.

Данный прибор способен обнаруживать как пары, так и частицы контрабанды НВ и ВВ.

Технические характеристики прибора VaporTracer:

1. Обнаруживаемые вещества: более 40 НВ и ВВ одновременно;

2. Источники питания: от сети 220 В или от аккумуляторной батареи (до 6 часов работы);

3. При обнаружении НВ или ВВ срабатывают как визуальный, так и звуковой сигнал тревоги.

В органах внутренних делдля поиска ВВ используютхроматограф газовый "Эхо-М".

Процесс исследования сорбированных проб состоит из двух самостоятельных стадий: отбор пробы и ее газохроматографический анализ.

При отборе пробы поток анализируемого воздуха прокачивается через концентратор. Вследствие повышенной сорбируемости пары низколетучих веществ улавливаются концентратором и удерживаются на его поверхности. Для проведения газохроматографического анализа концентратор с пробой помещают в камеру ввода прибора, в которой поддерживается температура, достаточная для испарения веществ с поверхности концентратора. После определенного времени подогрева концентратора через камеру продувается порция прогретого газа - носителя, которая переносит парогазовую смесь с анализируемой пробой в разделительную газохроматографическую колонку.

1) Название проекта:

Приборы для обнаружения пустот, подземных ходов, захоронений, полиэтиленовых газопроводов и немагнитных боеприпасов .

2) Краткое описание проекта:

Актуальность данной тематики заключается в том, что в настоящее время нет портативных и надежных приборов позволяющих определить существующими методами расположение аномалий грунта, и по характеру аномалий производить обнаружения пустот, подземных ходов и захоронений . Поиск и обнаружение биологических останков в настоящее время является не решенной мировой проблемой. В настоящее время отечественные и импортные радиоволновые миноискатели могут только обнаружить неметаллический предмет , т. е. нет селекции немагнитных мин от камней и предметов близкого размера . Также имеется острая необходимость для армии и спецслужб в обнаружении тонкого не запитанного кабеля при разминировании (от фугаса до радиовзрывателя), такие приборы в настоящее время в нашей стране и за рубежом отсутствуют.

В период 1990...2010 г. были разработаны и опробованы ряд модификаций приборов ИГА-1 для измерения сверхслабых электромагнитных полей естественного поля Земли и искажений этих полей вносимых от поглощения и переизлучения различными объектами. Приборы, представляют из себя селективные приемники электромагнитных полей в диапазоне 5...10 кгц, с вычислением интеграла фазового сдвига на измеряемой частоте (http:// www. *****). Принцип действия прибора ИГА-1 похож на радиоволновые миноискатели, только нет излучателя, которым является естественный фон Земли и более низкий диапазон частот. ИГА-1 фиксирует искажение электромагнитного поля в местах неоднородностей грунта при наличии под землей каких либо предметов, и предназначен для поиска неметаллических предметов, пустот, водяных жил, трубопроводов, человеческих останков по изменению фазового сдвига на границе перехода сред. В качестве выходного параметра прибора используется интеграл фазового сдвига на частоте приема, величина которого изменяется на границе перехода сред (грунт-труба, грунт-пустота). Прибор выполнен в виде переносного измерительного датчика с визуальной индикацией. Питание прибора осуществляется от аккумулятора. Вес всей аппаратуры в чемодане не превышает 5 кг, вес измерительного датчика не более 1 кг.


3) Характер проекта:

Расширение действующего производства

Выполнение НИОКР

Продажа лицензий на производство новых вариантов приборов другим производителям.

4) Отрасль применения:

· Высокие технологии, наукоемкие технологии

6) Объем требуемых инвестиций, в рублях

100 млн. руб

7) Срок окупаемости, лет

8) Период реализации проекта, лет

9) Форма сотрудничества:

· Акционерный капитал

· Долевое участие

10) Степень готовности проекта

Фирмой "Лайт-2" с 1994 г организовано производство приборов ИГА-1 на базе оборонных предприятий, выпущено более 300 приборов, которые используются в России и за рубежом. Варианты приборов ИГА-1 для обнаружения водных жил отработаны и не требуют дополнительных инвестиций. Обнаружение полиэтиленовых газопроводов отработано в ручном(не автоматизированном) режиме и предполагает работу хорошо обученного оператора.

Требуется модернизация и дальнейшая отработка приборов ИГА-1 для обнаружения пустот, подземных ходов, захоронений и немагнитных боеприпасов, полиэтиленовых газопроводов согласно полученных патентов на изобретения:

Патент РФ N 2119680 от 01.01.2001 г. Способ геоэлектромагнитной разведки и устройство для его реализации. , и др.

Патент РФ № 000 от 01.01.2001 г. Способ обнаружения местонахождения засыпанных биообъектов или их останков и устройство для его осуществления. , и др.

Патент РФ № 000 от 01.01.01 г. «Устройство для поиска и идентификации пластиковых мин», и др.

Патент РФ № 000 от 01.01.01 г."Устройство для поиска подземных трубопроводов", и др.

По поиску человеческих останков прибор ИГА-1 впервые прошел апробацию в поселке Нефтегорск (1995 г.), после землетрясения было найдено около 30 погибших. Отзыв главы администрации поселка Нефтегорск на сайте http:// www. ***** . В Екатеринбурге (1996 г) по линии МВД проведена работа по обнаружению трупов замурованных в автодорогу «Сибирский тракт» и захоронений в лесу в районе Нижнеисетского кладбища. Справки из уголовного дела № 000. г. Екатеринбург, 1996 г. на сайте http:// www. ***** .

В гг. с помощью прибора ИГА-1 удалось обнаружить могилы 100-150 летней давности при рестоврации и восстановлдении храмов: Георгиевского монастыря «Святые Кустики» Благовещенского района Башкирии, храма «Святой Троицы» села Красный Яр в Башкортостане (http:// www. *****), а также и и других храмов Башкортостана и Татарстана .

В 2008 году по просьбе жителя г. Туймазы были произведены поиски заброшенной могилы его отца Ивана Безымянникова, участника войны, бывшего секретаря райкома. Могила находилась в городском парке, после реконструкции парка в 1991 г. следы захоронения были потеряны. После раскопок было произведено перезахоронение останков на городском кладбище. Фотографии на сайте http:// www. *****.
При проведении поисковых исследований (2003 г.) в районе боев 1-й отдельной горно-стрелковой бригады в период Великой Отечественной войны, в Кировском районе Ленинградской области с помощью прибора ИГА-1 было опробована возможность обнаружения засыпанных окопов, блиндажей и захоронений, а также боеприпасов. Было установлено, что прибор ИГА-1 реагирует на боеприпасы и металлические предметы аналогично миноискателю ИПМ. Для обнаружения пустот и захоронений, вначале необходимо обнаружить и убрать весь металл с исследуемого места, затем производится обнаружение пустот и захоронений. Для селективной избирательности (только пустоты или человеческие останки) необходимо проводить дальнейшую модернизацию и совершенствование прибора ИГА-1


По поводу применения приборов ИГА-1 для инженерно-саперных целей была переписка с Советом безопасности РФ и Минобороной - направление по обнаружению не магнитных мин. Данное изобретение рассматривалось Комиссией по научно-техническим вопросам Совета безопасности РФ (1995 г,), в отделе изобретательства Минобороны (), в/ч 52684-А (Исх.565/ 2139 от 3.12.1996 г.), ЦНИИ 15 МО (исх 1131 от 1.09.1998 г.). Летом 2000 г. экспериментальный образец прибора ИГА-1 в варианте миноискателя проходил испытания в ЦНИИ 15 МО на предмет возможности обнаружения противотанковых, противопехотных немагнитных мин и залегающих на большой глубине неразорвавшихся фугасов, получен положительный отзыв (http:// www. *****),. Отмечены также и недостатки, для их устранения требуется дальнейшая доводка аппаратуры, которая требует дополнительных инвестиций. Учитывая, то, что существующие в мире миноискатели не магнитных мин не отличают их от камней близкого размера, дальнейшее развитие нашего метода позволит проводить такую селекцию по частоте приема путем снятия спектральных характеристик обнаруженных предметов. Для определения возможности фиксации не запитанных кабелей при разминировании (от фугаса до радиовзрывателя) один из приборов ИГА-1 был настроен под эту задачу и проведено опробование на берегу р. Белой в Уфе, в месте где больше нет ни каких коммуникаций, в результате получено подтверждение о возможности использования ИГА-1 для этих задач.

По обнаружению подземных ходов, в которых могут скрываться террористы, к прибору ИГА-1 был большой интерес у западных военных специалистов на выставке российских разработок и оборудования для разминирования местности и утилизации боеприпасов, которая проводилась 29-30 апреля 2002 г. в г. Москва на предприятии «Базальт». Несколько приборов ИГА-1 были проданы организациям и кладоискателям под эти задачи и успешно используются.

· Исследования и разработки

· Закупка оборудования

· Внедрение новых технологий

12) Имеется поддержка органами власти

На данный момент финансовой поддержки нет

13) наличие подготовленного бизнес-плана

В стадии разработки

14) Финансовое обеспечение проекта:

· Собственные средства в настоящий момент отсутствуют.

· Государственное финансирование отсутствует.

· Ранее привлеченные собственные средства с 1994 г. 10 млн руб. в современном исчислении

· Недостающие средства 100 млн руб. на 5 лет.

15) Предоставление прав инвестору:

· Приобретение акций 48 %

· Доли от объема полученной прибыли при продаже лицензий на производство новых отработанных вариантов приборов 50 %

16) Контактная информация:

Адрес контактного лица: г. Уфа, ул. К. Маркса 65\1 кв 74

E-mail контактного лица: *****@***ru

Контактное лицо:

Телефоны контактного лица: 0-69

17) Владелец проекта (выберите только один вариант в зависимости от владельца проекта)

Объем инвестиций:

100 000 000 Руб


Цель представления:

Соинвестирование


Описание проекта

1) Название проекта: Приборы для обнаружения пустот, подземных ходов, захоронений, полиэтиленовых газопроводов и немагнитных боеприпасов.

2) Краткое описание проекта: Актуальность данной тематики заключается в том, что в настоящее время нет портативных и надежных приборов позволяющих определить существующими методами расположение аномалий грунта, и по характеру аномалий производить обнаружения пустот, подземных ходов и захоронений .
Поиск и обнаружение биологических останков в настоящее время является не решенной мировой проблемой. В настоящее время отечественные и импортные радиоволновые миноискатели могут только обнаружить неметаллический предмет , т.е. нет селекции немагнитных мин от камней и предметов близкого размера .
Также имеется острая необходимость для армии и спецслужб в обнаружении тонкого не запитанного кабеля при разминировании (от фугаса до радиовзрывателя), такие приборы в настоящее время в нашей стране и за рубежом отсутствуют.

В период 1990...2010 г. были разработаны и опробованы ряд модификаций приборов ИГА-1 для измерения сверхслабых электромагнитных полей естественного поля Земли и искажений этих полей вносимых от поглощения и переизлучения различными объектами. Приборы, представляют из себя селективные приемники электромагнитных полей в диапазоне 5...10 кгц, с вычислением интеграла фазового сдвига на измеряемой частоте (http:// www.iga1.ru).

Принцип действия прибора ИГА-1 похож на радиоволновые миноискатели, только нет излучателя, которым является естественный фон Земли и более низкий диапазон частот. ИГА-1 фиксирует искажение электромагнитного поля в местах неоднородностей грунта при наличии под землей каких либо предметов, и предназначен для поиска неметаллических предметов, пустот, водяных жил, трубопроводов, человеческих останков по изменению фазового сдвига на границе перехода сред.
В качестве выходного параметра прибора используется интеграл фазового сдвига на частоте приема, величина которого изменяется на границе перехода сред (грунт-труба, грунт-пустота).

Прибор выполнен в виде переносного измерительного датчика с визуальной индикацией. Питание прибора осуществляется от аккумулятора. Вес всей аппаратуры в чемодане не превышает 5 кг, вес измерительного датчика не более 1 кг.

3) Характер проекта: - расширение действующего производства - выполнение НИОКР - продажа лицензий на производство новых вариантов приборов другим производителям.

4) Отрасль применения:
· Высокие технологии, наукоемкие технологии
· Приборостроение, радиоэлектронная промышленность

5) Регион приложения инвестиций: Россия, Башкортостан.

6) Объем требуемых инвестиций, в рублях 100 млн.руб

7) Срок окупаемости, лет 5 лет

8) Период реализации проекта, лет С 1994 г ---- 2016 г.

9) Форма сотрудничества:
· Акционерный капитал
· Долевое участие


Состояние проекта

10) Степень готовности проекта
Фирмой "Лайт-2" с 1994 г организовано производство приборов ИГА-1 на базе оборонных предприятий, выпущено более 300 приборов, которые используются в России и за рубежом.
Варианты приборов ИГА-1 для обнаружения водных жил отработаны и не требуют дополнительных инвестиций.
Обнаружение полиэтиленовых газопроводов отработано в ручном(не автоматизированном) режиме и предполагает работу хорошо обученного оператора.

Требуется модернизация и дальнейшая отработка приборов ИГА-1 для обнаружения пустот, подземных ходов, захоронений и немагнитных боеприпасов, полиэтиленовых газопроводов согласно полученных патентов на изобретения:
Патент РФ N 2119680 от 27.09.1998 г. Способ геоэлектромагнитной разведки и устройство для его реализации. Кравченко Ю.П., Савельев А.В. и др.
Патент РФ № 2116099 от 27.07.1998 г. Способ обнаружения местонахождения засыпанных биообъектов или их останков и устройство для его осуществления. Кравченко Ю. П., Савельев А. В. и др.
Патент РФ № 2206907 от 20 июня 2003 г. «Устройство для поиска и идентификации пластиковых мин», Кравченко Ю.П. и др. Патент РФ № 2202812 от 20 апреля 2003 г."Устройство для поиска подземных трубопроводов", Кравченко Ю.П. и др.

По поиску человеческих останков прибор ИГА-1 впервые прошел апробацию в поселке Нефтегорск (1995 г.), после землетрясения было найдено около 30 погибших.
Отзыв главы администрации поселка Нефтегорск на сайте http:// www.iga1.ru .
В Екатеринбурге (1996 г) по линии МВД проведена работа по обнаружению трупов замурованных в автодорогу «Сибирский тракт» и захоронений в лесу в районе Нижнеисетского кладбища.
В 2001-2010 гг. с помощью прибора ИГА-1 удалось обнаружить могилы 100-150 летней давности при рестоврации и восстановлдении храмов: Георгиевского монастыря «Святые Кустики» Благовещенского района Башкирии, храма«Святой Троицы» села Красный Яр в Башкортостане, а также и и других храмов Башкортостана и Татарстана.
В 2008 году по просьбе жителя г.Туймазы были произведены поиски заброшенной могилы его отца Ивана Безымянникова, участника войны, бывшего секретаря райкома. Могила находилась в городском парке, после реконструкции парка в 1991 г. следы захоронения были потеряны. После раскопок было произведено перезахоронение останков на городском кладбище.

При проведении поисковых исследований (2003 г.) в районе боев 1-й отдельной горно-стрелковой бригады в период Великой Отечественной войны, в Кировском районе Ленинградской области с помощью прибора ИГА-1 было опробована возможность обнаружения засыпанных окопов, блиндажей и захоронений, а также боеприпасов. Было установлено, что прибор ИГА-1 реагирует на боеприпасы и металлические предметы аналогично миноискателю ИПМ. Для обнаружения пустот и захоронений, вначале необходимо обнаружить и убрать весь металл с исследуемого места, затем производится обнаружение пустот и захоронений.
Для селективной избирательности (только пустоты или человеческие останки) необходимо проводить дальнейшую модернизацию и совершенствование прибора ИГА-1

По поводу применения приборов ИГА-1 для инженерно-саперных целей была переписка с Советом безопасности РФ и Минобороной - направление по обнаружению не магнитных мин. Данное изобретение рассматривалось Комиссией по научно-техническим вопросам Совета безопасности РФ (1995 г, Малей М.Д.), в отделе изобретательства Минобороны (Потемкин О.А.), в/ч 52684-А (Шишлин А. Исх.565/ 2139 от 3.12.1996 г.), ЦНИИ 15 МО (Костив В. исх 1131 от 1.09.1998 г.).

Летом 2000 г. экспериментальный образец прибора ИГА-1 в варианте миноискателя проходил испытания в ЦНИИ 15 МО на предмет возможности обнаружения противотанковых, противопехотных немагнитных мин и залегающих на большой глубине неразорвавшихся фугасов, получен положительный отзыв. Отмечены также и недостатки, для их устранения требуется дальнейшая доводка аппаратуры, которая требует дополнительных инвестиций.
Учитывая, то, что существующие в мире миноискатели не магнитных мин не отличают их от камней близкого размера, дальнейшее развитие нашего метода позволит проводить такую селекцию по частоте приема путем снятия спектральных характеристик обнаруженных предметов.
Для определения возможности фиксации не запитанных кабелей при разминировании (от фугаса до радиовзрывателя) один из приборов ИГА-1 был настроен под эту задачу и проведено опробование на берегу р.Белой в Уфе, в месте где больше нет ни каких коммуникаций, в результате получено подтверждение о возможности использования ИГА-1 для этих задач.
По обнаружению подземных ходов, в которых могут скрываться террористы, к прибору ИГА-1 был большой интерес у западных военных специалистов на выставке российских разработок и оборудования для разминирования местности и утилизации боеприпасов, которая проводилась 29-30 апреля 2002 г. в г. Москва на предприятии «Базальт». Несколько приборов ИГА-1 были проданы организациям и кладоискателям под эти задачи и успешно используются.

11) Направление использования инвестиций:
· Исследования и разработки
· Закупка оборудования
· Внедрение новых технологий

12) Имеется поддержка органами власти На данный момент финансовой поддержки нет

13) наличие подготовленного бизнес-плана В стадии разработки

14) Финансовое обеспечение проекта:
· Собственные средства в настоящий момент отсутствуют.
· Государственное финансирование отсутствует.
· Ранее привлеченные собственные средства с 1994 г. 10 млн руб. в современном исчислении
· Недостающие средства 100 млн руб. на 5 лет.

15) Предоставление прав инвестору:
· Приобретение акций 48 %
· Доли от объема полученной прибыли при продаже лицензий на производство новых отработанных вариантов приборов 50 %

16) Контактная информация:
Адрес контактного лица: 450015, г.Уфа, ул.К. Маркса 65\1 кв 74 Кравченко Юрий Павлович
E-mail контактного лица: [email protected]
Контактное лицо: Кравченко Юрий Павлович
Телефоны контактного лица: 8-3472-51-80-69

Ключевые экономические показатели
  • 2.3. Радиосвязь в овч - диапазоне
  • 2.4. Радиосвязь в вч - диапазоне
  • 2.5. Радиорелейная связь
  • § 3. Проводная связь
  • 3.1. Принципы организации проводной связи в овд
  • 3.2. Низкочастотная телефонная связь
  • 3.3. Телеграфная, факсимильная и телевизионная связь
  • § 4. Обзор современных возможностей средств связи
  • 4.1. Телефонная связь
  • 4.2. Средства оперативной радиосвязи
  • 4.3. Радиотелефонные сотовые сети
  • 4.4. Пейджинговая связь
  • Пейджер
  • § 5. Перспективы развития связи в органах внутренних дел
  • Глава III. Средства охранно-пожарной сигнализации
  • § 1. Основные направления применения средств охранно-пожарной сигнализации
  • 1.1. Вневедомственная охрана
  • 1.2. Система исполнения наказаний
  • 1.3. Охрана зданий, помещений органов внутренних дел
  • 1.4. Оперативно-розыскная деятельность
  • § 2. Понятие инженерно-технической укрепленности охраняемых объектов
  • 2.1. Виды охраняемых объектов
  • 2.2. Инженерно-техническая укрепленность охраняемых объектов
  • Инженерно-технические средства защиты периметра охраняемой территории
  • Инженерно-технические средства защиты конструктивных элементов зданий и помещений
  • § 3. Понятие охранно-пожарной сигнализации. Виды технических средств охранно-пожарной сигнализации
  • 3.1. Извещатели
  • 3.1.1. Пожарные извещатели
  • 3.1.2. Охранные и охранно-пожарные извещатели
  • 3.2. Устройства обработки информации
  • 3.3. Устройства вывода
  • § 4. Системы охраны: автономная и централизованная
  • 4.1. Система автономной охраны
  • 4.2. Централизованная система охраны
  • § 5. Системы телевизионного наблюдения и охраны
  • § 6. Оснащение объектов и помещений техническими средствами охранно-пожарной сигнализации
  • § 7. Объектовые комплексы охранно-пожарной сигнализации
  • Глава IV. Технические средства дежурных частей овд
  • § 1. Информационные системы
  • § 2. Система передачи информации
  • 2.1. Станции оперативной связи. Электронные
  • 2.2. Телеграфная связь
  • 2.3. Профессиональные системы радиосвязи овч-диапазона
  • 2.4. Транковые системы радиосвязи
  • 2.5. Пейджинговая связь
  • 2.6. Передача данных
  • § 3. Ввод, вывод, обработка информации
  • 3.1. Автоматизированные рабочие места и автоматизированные информационные системы для дежурных частей
  • 3.2. Многоканальные системы регистрации
  • 3.3. Геоинформационные системы
  • 3.4. Системы определения местоположения
  • 3.5. Вывод информации на большой экран
  • Глава V. Поисковая техника, средства контроля и досмотра
  • § 1. Способы сокрытия материальных объектов и их демаскирующие признаки
  • § 2. Классификация и общая характеристика поисковой техники
  • § 3. Правовые и организационно-тактические основы применения поисковой техники
  • § 4. Виды и характеристика поисковой техники овд
  • 4.1. Приборы для поиска предметов из черных и цветных металлов
  • 4.2. Приборы для поиска пустот и неоднородностей
  • 4.3. Приборы для поиска и идентификации взрывчатых и наркотических веществ
  • 4.4. Приборы для контроля почтовых поступлений, ручной клади, багажа
  • 4.6. Приборы для поиска и обнаружения человека в автотранспорте
  • 4.7. Приборы для поиска незахороненных трупов
  • 4.8. Приборы для поиска радиоизлучающих и звукозаписывающих устройств
  • 4.9. Приборы для выявления люминесцирующих веществ,
  • 4.10. Приборы для экспресс диагностики драгоценных металлов и камней
  • § 5. Особенности практического использования поисковой техники
  • Глава VI. Технические средства негласного
  • § 1. Классификация и правовые основы применения технических средств и систем негласного видеоконтроля
  • § 2. Технические средства и системы оперативного наблюдения
  • 2.1. Оптико-механические приборы
  • 2.2. Приборы видения в темноте
  • 2.3. Эндоскопы
  • 2.4. Телевизионные системы
  • § 3. Технические средства и системы негласной фиксации видеоинформации и тактика их применения
  • § 4. Организация применения средств и систем негласного видеоконтроля
  • Использования материалов, полученных в ходе проведения орм
  • § 5. Виды и тактические особенности применения технических систем негласного аудиоконтроля
  • 5.1. Беззаходовый вариант технических систем
  • 5.2. Заходовый вариант технических систем
  • Глава VII. Обеспечение безопасности информации
  • § 1. Средства противодействия преступной среды
  • § 2. Меры, принимаемые органами внутренних дел по нейтрализации средств противодействия преступной среды
  • § 3. Система информационной безопасности
  • 3.1. Правовое обеспечение безопасности информации
  • 3.2. Организационное обеспечение безопасности информации
  • 3.3. Инженерно-техническое обеспечение безопасности
  • § 4. Специфика проблемы безопасности оперативной связи
  • § 5. Технические средства обеспечения безопасности
  • 5.1. Средства поиска и обнаружения
  • 5.2. Средства активной защиты информации
  • 5.3. Способы защиты телефонных переговоров
  • § 6. Поисковые мероприятия по обнаружению и ликвидации угрозы съема информации
  • 6.1. Изучение объекта
  • 6.2. Подготовка к поисковым работам
  • 6.3. Контроль радиоэфира
  • 6.4. Визуальный осмотр
  • 6.5. Проверка электронных приборов
  • 6.6. Проверка предметов мебели и интерьера
  • 6.7. Проверка электроустановочных и коммуникационных изделий
  • 6.8. Проверка ограждающих конструкций
  • Глава VIII. Средства и способы маркировки и
  • § 1. Назначение, сущность, основные направления и правовые основы применения специальных химических веществв деятельности органов внутренних дел
  • § 2. Классификация, виды специальных химических веществ и методы их применения
  • § 3. Применение химических веществ в ловушках
  • § 4. Особенности применения химических веществ при проведении оперативно-розыскных мероприятий
  • 4.1. Критерии, которые необходимо учитывать при выборе
  • Конкретных целей оперативно-розыскных мероприятий
  • 4.2. Объекты, помечаемые специальными химическими веществами, при проведении оперативно-розыскных мероприятий
  • 4.3. Правила организации оперативно-розыскных мероприятий
  • § 5. Особенности использования оперативно-технических средств “Бумеранг”
  • § 6. Документальное оформление мероприятий по маркировке и выявлению объектов, представляющих оперативный интерес
  • Глава IX. Средства оперативного дактилоскопирования
  • § 1. Понятие, цели и правовые основания негласного дактилоскопирования
  • § 2. Средства для проведения негласного дактилоскопирования
  • § 3. Тактика проведения мероприятия по негласному дактилоскопированию
  • 3.1. Подготовка к негласному дактилоскопированию
  • 3.2. Проведение негласного дактилоскопирования
  • Глава X. Особенности применения специальных технических cредств при проведении оперативно-розыскных мероприятий
  • § 1. Оперативно-розыскные мероприятия, связанные с контро­лем почтовых, телефонных и технических каналов связи
  • § 2. Наблюдение с применением аудио- и видеозаписи
  • 2.1. Условия, влияющие на качество звукозаписи
  • 2.2. Методы борьбы с внешними шумами
  • 2.3. Микрофоны
  • 2.4. Системы дистанционного съёма акустической информации
  • 2.5. Влияние акустических свойств помещений
  • 2.6. Технология обработки негласно записанной
  • § 3. Понятие о специальных технических средствах получения и фиксации информации в процессе
  • Приложение
  • О г л а в л е н и е
  • Ванчаков Николай Борисович,
  • 4.2. Приборы для поиска пустот и неоднородностей

    Для поиска тайников в строительных конструкциях из кирпича и бетона при одностороннем доступе предназначен прибор "Кайма".

    Принцип действия прибора основан на регистрации частично отраженной от границ раздела двух сред радиоволны, излучаемой передающей антенной. В приемном устройстве, состоящем из приемной антенны и усилителя, отраженный сигнал обрабатывается и передается на звуковой и стрелочный индикаторы.

    Прибор состоит из блока обработки и связанного с ним датчика. Масса прибора составляет не более 1,6 кг.

    Дальность обнаружения внутренних полостей в зависимости от их размера составляет до 250 мм. При этом не имеет значения степень заполнения полости различными вложениями.

    Скорость сканирования при работе с прибором должна составлять от 5 до 15 см/с. Датчик во время поиска должен плотно и без перекосов прилегать к стене.

    Другим прибором, обеспечивающим обнаружение тайников, является прибор "Жасмин", в комплект которого дополнительно входит устройство для сверления и эндоскоп для осмотра содержимого полости.

    В приборе используется импульсный метод зондирования и регистрируется сигнал, отраженный от стенок тайников, который задерживается по времени относительно зондирующего импульса. Путем измерения времени задержки можно оценить расстояние до источника сигнала.

    Прибор "Жасмин" предпочтительно использовать для больших по габаритам и глубине залегания тайников. С его помощью можно обнаруживать внутренние полости: в глиняных и песчаных грунтах - на глубине до 500 мм; в кирпичных стенах - на глубине до 400 мм; в бетонных стенах - на глубине до 200 мм.

    4.3. Приборы для поиска и идентификации взрывчатых и наркотических веществ

    Все взрывчатые вещества (ВВ) имеют специфический запах. Одни, как, например, нитроглицерин пахнут очень сильно, другие, как тротил, - значительно слабее, а некоторые, в частности, пластиды - очень слабо. Тем не менее, все эти ВВ обнаруживают, по крайней мере, с использованием служебно-розыскных собак.

    Современные газоанализаторы , являющиеся своеобразной моделью “собачьего носа”, тоже могут делать это, правда не столь эффективно в отношении пластидов.

    Отечественные газоанализаторы типа МО2 по своим эксплуатационным характеристикам не уступают лучшим зарубежным образцам. Реализуемая на практике их чувствительность (порядка 10 -13...-14 г/см 3 по ТНТ) позволяет надежно фиксировать штатные ВВ типа тротила, гексогена и др. Правда, все подобные приборы достаточно дорогостоящие.

    Принцип действия таких приборов основан на методах газовой хроматографии и дрейфспектрометрии ионов.

    Хроматографические детекторы паров взрывчатых и наркотических веществ требуют применения высокочистых газов-носителей (аргон, азот), что создает определенные неудобства в процессе эксплуатации этих приборов. Оригинально решена эта проблема в детекторе Egis фирмы Thermedics (США): газ-носитель водород получается в самом приборе путем электрохимического разложения воды.

    В дрейфспектрометрических детекторах основу газа-носителя составляет воздух.

    Важным технологическим звеном в процессе обнаружения взрывчатых и наркотических веществ является пробоотбор. Пробоотборник - это, в сущности, малогабаритный пылесос, который задерживает пары и частицы веществ на сорбирующих поверхностях или в фильтре (концентратор). Бумажный фильтр можно использовать и для взятия мазков с поверхности контролируемого предмета. Затем, в процессе нагрева происходит десорбция веществ из концентратора и парообразная фракция подвергается анализу.

    Достаточно трудной задачей является обнаружение слаболетучих взрывчатых веществ, входящих в состав пластиковой взрывчатки, однако приборы последнего поколения успешно справляются и с ней.

    Следует отметить, что в сочетании с газоанализатором целесообразно использовать сравнительно недорогой химический комплект для экспресс-анализа следовых количеств взрывчатых и наркотических веществ.

    Анализаторы следов ВВ относятся к классу сравнительно недорогих средств для экспресс-выявления следов взрывчатых веществ на поверхности предметов. Используется принцип так называемой жидкостной хроматографии.

    Следы ВВ изменяют окраску действующего на них химического реагента. Устройство компактно, просто в обращении. Реализованная на практике чувствительность порядка 10 -8...-9 г/см 3 по ТНТ и 10 -6...-7 г/см 3 по гексогену, оксогену и тетрилу. Средство незаменимо в полевых условиях.

    Ядерно-физические приборы - сложные и сравнительно дорогие устройства, позволяющие выявить ВВ по наличию в них водорода и азота, способны обнаружить ВВ в разнообразных условиях, в том числе и за преградой.

    Наибольший пользовательский интерес представляют нейтронные дефектоскопы . Они выявляют ВВ как объект с повышенным содержанием водорода. Для этого используется слабый источник нейтронов, которые, попадая на ВВ, рассеиваются на атомах водорода и регистрируются приемником. Отечественные нейтронные дефектоскопы типа “Исток-Н” имеют высокую производительность и конструктивно реализованы в портативном варианте.

    Одним из наиболее ярких представителей приборов обнаружения и идентификации наркотических и взрывчатых веществ (НВ и ВВ) является прибор ITEMIZER , изготовленный фирмой Ion Track Instrument (Великобритания) и успешно применяемый в Калининградской региональной таможенной лаборатории для проведения экспертиз НВ и ВВ, а также в Калининградской оперативной таможне для проведения скрытых оперативных мероприятий.

    С помощью данного прибора можно успешно проводить проверку и поиск следов НВ и ВВ, которые в случае их присутствия неизбежно имеются на поверхностях багажа, автомобилей, транспортных упаковок и контейнеров. Любая поверхность, с которой соприкасался контрабандный товар, может быть проверена.

    Прибор в течение 30 секунд переключается из режима обнаружения НВ на режим обнаружения ВВ. Анализатор, встроенный сенсорный экран, принтер и блок испарения-десорбции собраны в одном корпусе и образуют легко транспортируемый прибор небольшого веса. Органы управления и визуального контроля выведены на панель сенсорного экрана.

    В случае обнаружения контрабанды на экране мигает сигнал тревоги, вещество идентифицируется, раздается звуковой сигнал и все полученные результаты печатаются на специальной ленте встроенным принтером с указанием даты и времени.

    Отбор пробы производится путем протирки исследуемой поверхности бумажным фильтром или при помощи блока дистанционного взятия проб (автономного ручного микропылесоса, в который вставляется бумажный фильтр). В каждом случае фильтр с пробой помещается в блок испарения-десорбции для проведения автоматического анализа. Присутствие или отсутствие контрабанды прибор подтверждает в течение 8 секунд, что позволяет обрабатывать достаточно большое количество проб ежесуточно.

    Архив (библиотека) компьютера прибора включает в себя программу идентификации до 40 типов НВ и ВВ, а также может подвергаться изменению и дополнению. Кроме того, в результате сравнения плазмограмм одного и того же вещества, имеется возможность определения места производства исследуемого вещества, при условии наличия архивных данных по данному веществу.

    Основные технические параметры прибора ITEMIZER:

    1. Чувствительность: не более 200 пикограмм НВ и ВВ.

    2. Вероятность ложной тревоги при взятии проб:

    С поверхности - 1%;

    С воздуха - 0,1%.

    3. Время подготовки к работе - до 50 минут.

    4. Электропитание: 220 В, 50 Гц.

    Для проведения досмотрово-поисковых мероприятий целесообразно использовать портативный переносной аналог данного прибора - VaporTracer. Основанный на технологии спектрометрии мобильности захваченных ионов, этот ручной детектор разработан для использования в местах. где требуется повышенная безопасность, где необходимо проводить быстрый и точный досмотр. Оператор направляет сопло детектора на досматриваемый объект и нажимает активатор. Проба моментально попадает в детектор и анализируется. Весь процесс занимает несколько секунд.

    Прибор весит менее 4 кг и способен обнаруживать и идентифицировать крайне малое количество НВ и ВВ. Система работает, забирая пробу пара в детектор, где она нагревается, ионизируется, а затем идентифицируется, показывая результаты на уникальной плазмограмме.

    Данный прибор способен обнаруживать как пары, так и частицы контрабанды НВ и ВВ.

    Технические характеристики прибора VaporTracer:

    1. Обнаруживаемые вещества: более 40 НВ и ВВ одновременно;

    2. Источники питания: от сети 220 В или от аккумуляторной батареи (до 6 часов работы);

    3. При обнаружении НВ или ВВ срабатывают как визуальный, так и звуковой сигнал тревоги.

    В органах внутренних делдля поиска ВВ используют хроматограф газовый "Эхо-М".

    Процесс исследования сорбированных проб состоит из двух самостоятельных стадий: отбор пробы и ее газохроматографический анализ.

    При отборе пробы поток анализируемого воздуха прокачивается через концентратор. Вследствие повышенной сорбируемости пары низколетучих веществ улавливаются концентратором и удерживаются на его поверхности. Для проведения газохроматографического анализа концентратор с пробой помещают в камеру ввода прибора, в которой поддерживается температура, достаточная для испарения веществ с поверхности концентратора. После определенного времени подогрева концентратора через камеру продувается порция прогретого газа - носителя, которая переносит парогазовую смесь с анализируемой пробой в разделительную газохроматографическую колонку.

    При прохождении пробы через газохроматографическую колонку происходит ее разделение во времени на индивидуальные компоненты. На выходе хроматографической колонки установлен детектор электронного захвата, с помощью которого осуществляется регистрация разделенных компонентов.

    Управление циклом анализа и обработка результатов анализа осуществляется с помощью встроенной в прибор специализированной микро-ЭВМ.

    В хроматографе используется в качестве газа-носителя газообразный аргон, находящийся во встроенном баллоне емкостью 2л. Суммарное время работы прибора от баллона не менее 50 часов.

    Загрузка...