bookingsky.ru

Угловое ускорение движении по окружности. Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости. Для характеристики и

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным , оно является равноускоренным .

Угловая скорость

Выберем на окружности точку 1 . Построим радиус. За единицу времени точка переместится в пункт 2 . При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T - это время, за которое тело совершает один оборот.

Частота вращение - это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.


Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено - это есть период T . Путь , который преодолевает точка - это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения


Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна v A и v B соответственно. Ускорение - изменение скорости за единицу времени. Найдем разницу векторов.

Темы кодификатора ЕГЭ: движение по окружности с постоянной по модулю скоростью, центростремительное ускорение.

Равномерное движение по окружности - это достаточно простой пример движения с вектором ускорения, зависящим от времени.

Пусть точка вращается по окружности радиуса . Скорость точки постоянна по модулю и равна . Скорость называется линейной скоростью точки.

Период обращения - это время одного полного оборота. Для периода имеем очевидную формулу:

. (1)

Частота обращения - это величина, обратная периоду:

Частота показывает, сколько полных оборотов точка совершает за секунду. Измеряется частота в об/с (обороты в секунду).

Пусть, например, . Это означает, что за время точка совершает один полный
оборот. Частота при этом получается равна: об/с; за секунду точка совершает 10 полных оборотов.

Угловая скорость.

Рассмотрим равномерное вращение точки в декартовой системе координат. Поместим начало координат в центре окружности (рис. 1 ).


Рис. 1. Равномерное движение по окружности

Пусть - начальное положение точки; иными словами, при точка имела координаты . Пусть за время точка повернулась на угол и заняла положение .

Отношение угла поворота ко времени называется угловой скоростью вращения точки:

. (2)

Угол , как правило, измеряется в радианах, поэтому угловая скорость измеряется в рад/с. За время, равное периоду вращения, точка поворачивается на угол . Поэтому

. (3)

Сопоставляя формулы (1) и (3) , получаем связь линейной и угловой скоростей:

. (4)

Закон движения.

Найдём теперь зависимость координат вращающейся точки от времени. Видим из рис. 1 , что

Но из формулы (2) имеем: . Следовательно,

. (5)

Формулы (5) являются решением основной задачи механики для равномерного движения точки по окружности.

Центростремительное ускорение.

Теперь нас интересует ускорение вращающейся точки. Его можно найти, дважды продифференцировав соотношения (5) :

С учётом формул (5) имеем:

(6)

Полученные формулы (6) можно записать в виде одного векторного равенства:

(7)

где - радиус-вектор вращающейся точки.

Мы видим, что вектор ускорения направлен противоположно радиус-вектору, т. е. к центру окружности (см. рис. 1 ). Поэтому ускорение точки, равномерно движущейся по окружности, называется центростремительным.

Кроме того, из формулы (7) мы получаем выражение для модуля центростремительного ускорения:

(8)

Выразим угловую скорость из (4)

и подставим в (8) . Получим ещё одну формулу для центростремительного ускорения.

Движение по окружности – частный случай криволинейного движения. Скорость тела в любой точке криволинейной траектории направлена по касательной к ней (рис.2.1). Скорость как вектор при этом может изменяться и по модулю (величине) и по направлению. Если модуль скоростиостается неизменным, то говорят оравномерном криволинейном движении.

Пусть тело движется по окружности с постоянной по величине скоростью из точки 1 в точку 2.

При этом тело пройдет путь, равный длине дуги ℓ 12 между точками 1 и 2 за времяt. За это же времяtрадиус- векторR, проведенный из центра окружности 0 к точке, повернется на угол Δφ.

Вектор скорости в точке 2 отличается от вектора скорости в точке 1 по направлению на величину ΔV:

;

Для характеристики изменения вектора скорости на величину δv введем ускорение:

(2.4)

Вектор в любой точке траектории направлен по радиусуRкцентру окружности перпендикулярно к вектору скоростиV 2 . Поэтому ускорение, характеризующее при криволинейном движении изменение скоростипо направлению, называютцентростремительным или нормальным . Таким образом, движение точки по окружности с постоянной по модулю скоростью являетсяускоренным .

Если скорость изменяется не только по направлению, но и по модулю (величине), то кроме нормального ускорениявводят еще икасательное (тангенциальное) ускорение, которое характеризует изменение скорости по величине:

или

Направлен вектор по касательной в любой точке траектории (т.е. совпадает с направлением вектора). Угол между векторамииравен 90 0 .

Полное ускорение точки, движущейся по криволинейной траектории, определяется как векторная сумма (рис.2.1.).

.

Модуль вектора
.

Угловая скорость и угловое ускорение

При движении материальной точки по окружности радиус-векторR, проведенный из центра окружности О к точке, поворачивается на угол Δφ (рис.2.1). Для характеристики вращения вводятся понятия угловой скорости ω и углового ускорения ε.

Угол φ можно измерять в радианах. 1 рад равен углу, который опирается на дугу ℓ, равную радиусуRокружности, т.е.

или 12 = R φ (2.5.)

Продифференцируем уравнение (2.5.)

(2.6.)

Величина dℓ/dt=V мгн. Величину ω =dφ/dtназываютугловой скоростью (измеряется в рад/с). Получим связь между линейной и угловой скоростями:

Величина ω векторная. Направление вектораопределяетсяправилом винта (буравчика) : оно совпадает с направлением перемещения винта, ориентированного вдоль оси вращения точки или тела и вращаемого в направлении поворота тела (рис.2.2), т.е.
.

Угловым ускорением называется векторная величина производная от угловой скорости (мгновенное угловое ускорение)

, (2.8.)

Вектор совпадает с осью вращения и направлен в туже сторону, что и вектор, если вращение ускоренное, и в противоположную, если вращение замедленное.

Число оборотов n тела в единицу времени называют частотой вращения .

Время Т одного полного оборота тела называют периодом вращения . При этом R опишет угол Δφ=2π радиан

С учетом сказанного

, (2.9)

Уравнение (2.8) можно записать следующим образом:

(2.10)

Тогда тангенциальная составляющая ускорения

а  =R(2.11)

Нормальное ускорение а n можно выразить следующим образом:

с учетом (2.7) и (2.9)

(2.12)

Тогда полное ускорение .

Для вращательного движения с постоянным угловым ускорением можно записать уравнение кинематики по аналогии с уравнением (2.1) – (2.3) для поступательного движения:

,

.

1 . Колесо при вращении имеет угловую скорость 10π рад/с. После торможения, за минуту его скорость уменьшилась до 6π рад/с. Найдите угловое ускорение колеса.

2 . Маховик начал вращаться равноускоренно и за 10 с достиг угловой скорости 10π рад/с. Определите угловое ускорение маховика.

3 . Укажите направление тангенциального ускорения в точках A , B , C , D при движении по окружности по часовой стрелке (рис. 1), если:

а) если скорость увеличивается;

б) уменьшается.

4 . Определите тангенциальное ускорение колеса радиуса 30 см, если он начинает тормозить с угловым ускорением 0,2 рад/с 2 .

5 . Определите угловое ускорение вала электродвигателя радиуса 0,5 см, если его тангенциальное ускорение равно 1 см/с 2 .

6 . Сравните формулы, описывающие равноускоренное движение по прямой и по окружности, и, используя метод аналогии, заполните таблицу.

Величины и формулы Равноускоренное движение по прямой (линейные величины) Равноускоренное движение по окружности (угловые величины)
1 Скорость начальная υ 0
2 Скорость конечная υ
3 Перемещение Δr
4 Ускорение a
5 Формула для расчета ускорения \(~a_x = \frac{\upsilon_x - \upsilon_{0x}}{t}\)
6 Формула для расчета скорости. \(~\upsilon_x = \upsilon_{0x} +a_x t\)
7 Формулы для расчета перемещения \(~\Delta r_x = \upsilon_{0x} t + \frac{a_x t^2}{2}\) ; \(~\Delta r_x = \upsilon_x t - \frac{a_x t^2}{2}\) ; \(~\Delta r_x = \frac{\upsilon_x + \upsilon_{0x}}{2} \cdot t\) ; \(~\Delta r_x = \frac{\upsilon^2_x - \upsilon^2_{0x}}{2 a_x}\) ;

7 . Маховик начал вращаться равноускоренно и через 10 с стал вращаться с периодом 0,2 с. Определите:

б) угловое перемещение, которое он сделает за это время.

8 . Маховик, вращающийся с частотой 2 Гц, останавливается в течении 1,5 мин. Считая движение маховика равнозамедленным, определите:

а) угловое ускорение маховика;

б) угловое перемещение маховика до полной остановки.

9 . Диск вращается с угловым ускорением 2 рад/с 2 . Определите угловое перемещение диска при изменении частоты вращения от 4 Гц до 1,5 Гц?

10 . Колесо, вращаясь равнозамедленно, при торможении уменьшило свою частоту за 1 мин от 5 Гц до 3 Гц. Найдите угловое перемещение, которые совершило колесо за время торможения.

Уровень C

1 . Маховик начинает вращаться равноускоренно из состояния покоя и за первые 2 мин делает 3600 оборотов. Найдите угловое ускорение маховика.

2 . Ротор электродвигателя начинает вращаться из состояния покоя равноускоренно и за первые 5 с делает 25 оборотов. Вычислите угловую скорость ротора в конце пятой секунды.

3 . Пропеллер самолета вращается с частотой равной 20 Гц. В некоторый момент времени выключают мотор. Сделав 80 оборотов, пропеллер останавливается. Сколько времени прошло с момента выключения мотора до остановки, если вращение пропеллера считать равнозамедленным?

4 . Колесо, вращаясь равноускоренно, достигло угловой скорости 20 рад/с через 10 оборотов после начала вращения. Найдите угловое ускорение колеса.

5 . Материальная точка движется по окружности. Когда центростремительное ускорение точки становится равным 3,2 м/с 2 , угол между вектором полного и центростремительного ускорений равен 60°. Найдите тангенциальное ускорение точки для этого момента времени.

6 . Точка движется по кривой с постоянным тангенциальным ускорением 0,5 м/с 2 . Определите полное ускорение точки на участке кривой с радиусом кривизны 3 м в момент времени, когда линейная скорость равна 2 м/с.

7 . Небольшое тело начинает движение по окружности радиусом 30 м с постоянным по модулю тангенциальным ускорением 5 м/с 2 . Найдите полное ускорение тела через 3 с после начала движения.

8 . Диск радиусом 10 см, находящийся в состоянии покоя, начал вращаться с постоянным угловым ускорением 0,5 рад/с 2 . Найдите полное ускорение точек на окружности диска в конце второй секунды после начала вращения.

9 . Угол поворота колеса радиусом 0,1 м изменяется по закону φ =π · t . Найдите угловую и линейную скорости, центростремительное и тангенциальное ускорения точек обода колеса.

10 . Колесо вращается по закону φ = 5t t 2 . Найдите в конце первой секунды вращения угловую скорость колеса, а также линейную скорость и полное ускорение точек, лежащих на ободе колеса. Радиус колеса 20 см.

Загрузка...