bookingsky.ru

Схемы и печатные платы частомеров. "Электроника и Радиотехника"домашнему мастеру! Частотомер - цифровая шкала. Схема и инструкция по монтажу

На базе только одной микросхемы К155ЛАЗ, используя все ее логические элементы 2И-НЕ, можно построить сравнительно простой прибор, способный измерять частоту переменного напряжения примерно от 20 Гц до 20 кГц. Входным элементом такого измерительного прибора колебаний звуковой частоты служит триггер Шмитта - устройство, преобразующее подаваемое на его вход переменное напряжение синусоидальной формы в электрические импульсы такой же частоты. Без такого преобразования аналогового сигнала логические элементы работать не будут, причем триггер Шмитта "срабатывает" при определенной амплитуде входного сигнала. Если она меньше порогового значения, импульсного сигнала на выходе триггера не будет.

Начнем с опыта.

Триггер Шмитта. Пользуясь схемой, показанной на рис. 23, а, смонтируйте на макетной панели микросхему К155ЛАЗ, включив в работу только два ее логических элемента. Здесь же, на панели, разместите батареи GB1 и GB2, составленные из четырех гальванических элементов 332 или 316, и переменный резистор R1 сопротивлением 1,5 или 2,2 кОм (желательно с функциональной характеристикой А - линейной). Выводы батарей подключайте к резистору только на время опытов.

Включите питание микросхемы и по вольтметру постоянного тока установите движок переменного резистора в такое положение, при котором на левом, по схеме, выводе резистора R2, являющемся входом триггера Шмитта, будет нулевое напряжение. При этом элемент DD1.1 окажется в единичном состоянии - на его выходном выводе 3 будет напряжение высокого уровня, а элемент DD1.2 - в нулевом. Таково исходное состояние элементов этого триггера.

Рис. 23. Опытный триггер Шмитта и графики, иллюстрирующие его работу

Теперь вольтметр постоянного тока подключите к выходу элемента DD1.2 и, внимательно наблюдая за его стрелкой, начинайте плавно перемещать движок переменного резистора в сторону верхнего, по схеме, вывода, а затем, не останавливаясь, в обратную сторону - до нижнего вывода, далее - до верхнего и т. д. Что при этом фиксирует вольтметр? Периодическое переключение элемента DD1.2 из нулевого состояния в единичное, т. е., иначе говоря, появление на выходе триггера импульсов положительной полярности.

Взгляните на графики б и в на том же рис. 23, которые иллюстрируют работу триггера. Перемещением движка переменного резистора из одного крайнего положения в другое вы имитировали подачу на вход опытного устройства переменного напряжения синусоидальной формы (рис. 23.б) амплитудой до 3 В. Пока напряжение положительной полуволны этого сигнала было меньше порогового (U пор.1), устройство сохраняло исходное состояние. При достижении же порогового напряжения, равного примерно 1,7 В (в момент t 1), оба элемента переключились в противоположные состояния и на выходе триггера (вывод 6 элемента DD1.2) появилось напряжение высокого уровня. Дальнейшее повышение положительного напряжения на входе не изменило этого состояния элементов триггера. А вот при перемещении движка в обратную сторону, когда напряжение на входе триггера снизилось примерно до 0,5 В (момент t 2), оба элемента переключились в первоначальное состояние. На выходе триггера вновь появился высокий уровень напряжения.

Отрицательная полуволна не изменила этого состояния элементов, образующих триггер Шмитта, поскольку оказалась замкнутой на общий проводник источника питания через внутренние диоды входной цепи элемента DD1.1.

При следующей положительной полуволне входного переменного напряжения на выходе триггера сформируется второй импульс положительной полярности (моменты t 3 и t 4). Повторите этот опыт несколько раз и по показаниям вольтметров, подключенных ко входу и выходу триггера, постройте графики, характеризующие его работу. Они должны получиться такими же, как и те, что на графиках рис. 23. Два разных по уровню порога срабатывания элементов - наиболее характерная особенность триггера Шмитта.

Принципиальная схема предлагаемого для повторения частотомера приведена на рис. 24. Логические, элементы DD1.1, DD1.2 и резисторы R1-R3 образуют триггер Шмитта, а два других элемента той же микросхемы - формирователь его выходных импульсов, от частоты следования которых зависят показания микроамперметра РА1. Без формирователя прибор не даст достоверных результатов измерения, потому что длительность импульсов на выходе триггера зависит от частоты входного измеряемого переменного напряжения.

Конденсатор С1 - разделительный. Пропуская широкую полосу колебаний звуковой частоты, он преграждает путь постоянной составляющей источника сигнала. Диод VD2 замыкает на общий провод цепи питания отрицательные полуволны напряжения (в принципе этого диода может и не быть, поскольку его функцию способны выполнять внутренние диоды на входе элемента DD1.1), диод VD1 ограничивает амплитуду положительных полуволн, поступивших на входы первого элемента, на уровне напряжения источника питания.

Рис. 24. Принципиальная схема простейшего частотомера

С выхода триггера (вывод 6 элемента DD1.2) импульсы положительной полярности поступают на вход формирователя. Работает формирователь так. Элемент DD1.3 включен инвертором, а DD1.4 используется по своему прямому назначению-как логический элемент 2И-НЕ. Как только на входе формирователя (выводы 9, 10 элемента DD1.3) появляется напряжение низкого уровня, элемент DD1.3 переключается в единичное состояние и через него и резистор R4 заряжается один из конденсаторов С2-С4. По мере зарядки конденсатора положительное напряжение на выводе 13 элемента DD1.4 повышается до высокого уровня. Но этот элемент остается в единичном состоянии, так как на втором его входном выводе 12, как и на выходе триггера Шмитта, низкий уровень напряжения. В таком режиме через микроамперметр протекает незначительный ток. Как только на выходе триггера Шмитта появляется напряжение высокого уровня, элемент DD1.4 переключается в нулевое состояние и через микроампер-метр начинает протекать значительный ток. Одновременно элемент DD1.3 переключается в нулевое состояние, и конденсатор формирователя начинает разряжаться. Когда напряжение на нем снизится до порогового, элемент DD1.4 вновь переключится в единичное состояние. Таким образом, на выходе формирователя появляется импульс отрицательной полярности (см. рис. 23,г), в течение которого через микроамперметр протекает ток, значительно больший, чем начальный. Угол отклонения стрелки, микроамперметра пропорционален частоте следования импульсов: чем она больше, тем на больший угол отклоняется стрелка.

Длительность импульсов на выходе формирователя определяется продолжительностью разрядки включенного времязадающего конденсатора (С2, СЗ или С4) до напряжения срабатывания элемента DD1.4. Чем меньше его емкость, тем короче импульс, тем большую частоту входного сигнала можно измерить. Так, с времязадающнм конденсатором С2 емкостью 0,2 мкФ прибор способен измерять частоту колебаний ориентировочно от 20 до 200 Гц, с конденсатором СЗ емкостью 0,02 мкФ - от 200 до 2000 Гц, с конденсатором С4 емкостью 2000 пФ - от 2 до 20 кГц. Подстроечными резисторами R5 - R7 стрелку микроамперметра устанавливают на конечную отметку шкалы, соответствующую наибольшей измеряемой частоте соответствующего поддиапазона. Минимальный уровень переменного напряжения, частоту которого можно измерить, около 1,5В.

Еще раз проанализируйте графики на рис. 23, чтобы закрепить в памяти принцип работы частотомера, а затем дополните опытный триггер Шмитта деталями входной цепи и формирователя и испытайте устройство в действии на макетной панели. На это время переключатель поддиапазонов не нужен, времязадающий конденсатор, например С2, можно подключить непосредственно к выводу 13 элемента DD1.4, а в цепь микроамперметра включить один из подстроечных резисторов или постоянный резистор сопротивлением 2,2...3,3 кОм. Микроамперметр РА1 на ток полного отклонения стрелки 100 мкА такой же, как в сетевом блоке питания.

Налаживание. Закончив монтаж, включите источник питания и подайте на входные выводы 1, 2 первого элемента триггера Шмитта импульсы положительной полярности. Их источником может быть описанный выше генератор испытательных импульсов или другой аналогичный генератор. Частоту следования импульсов установите минимальную. При этом стрелка микроамперметра должна резко отклоняться на некоторый угол и возвращаться к нулевой отметке шкалы, что будет свидетельствовать о работоспособности частотомера. Если же микроамперметр не реагирует на входные импульсы, придется подобрать точнее резистор R2: его сопротивление может быть от 1,8 до 5,1 кОм.

Далее подайте на вход прибора (через конденсатор С1) переменное напряжение 3...5 В с понижающего сетевого трансформатора. Теперь стрелка микроамперметра должна отклониться на некоторый угол, соответствующий частоте 50 Гц. Подключите параллельно времязадающему конденсатору еще один такой же или большей емкости. Угол отклонения стрелки увеличится.

Точно так же можно испытать устройство на втором и третьем поддиапазонах измерения, но при входных сигналах соответствующих частот.

После этого детали частотомера можно перенести с макетной панели на монтажную плату и укрепить на ней подстроечные резисторы R5-R7 (рис. 25), а плату укрепить в корпусе, конструкция которого может быть произвольная. Конденсаторы С2 и СЗ составлены из двух конденсаторов каждый, а С4 из трех. На лицевой стенке корпуса разместите микроамперметр, переключатель поддиапазонов (например, галетный ЗПЗН или другой с двумя секциями на три положения), входные гнезда (XS1, XS2) или зажимы.

Впрочем, возможно и другое конструктивное решение: плату частотомера можно встроить в корпус блока питания и его же микроамперметр использовать при измерении частоты электрических колебаний. Шкала частотомера - общая для всех поддиапазонов измерения и практически равномерная. Поэтому надо только определить начальную и конечную границы шкалы, применительно к одному из них - к поддиапазону "20...200 Гц", после чего подогнать под нее границы частот двух других поддиапазонов измерения. В дальнейшем, при переключении прибора на поддиапазон "200...2000 Гц" результат измерений, считанный по шкале, будете умножать на 10, а при измерении в поддиапазоне "2...20 кГц" - на 100. Техника градуировки такова. Переключатель SA1 установите в положение измерения в поддиапазоне "20...200 Гц", движок подстроечного резистора R5 - в положение наибольшего сопротивления и подайте на вход частотомера от звукового генератора, например ГЗ-33, сигнал частотой 20 Гц напряжением 1,5...2 В.

Сделайте на шкале отметку, соответствующую углу отклонения стрелки микроамперметра. Затем звуковой генератор перестройте на частоту 200 Гц и подстроечным резистором R5 установите стрелку прибора на конечную отметку шкалы. После этого по сигналам звукового генератора сделайте на шкале отметки, соответствующие частотам 30, 40, 50 и т. д. до 190 Гц. Позже эти участки шкалы разделите еще на несколько частей, каждая из которых будет соответствовать численному значению частоты измеряемого сигнала.

Затем частотомер переключите на второй поддиапазон измерений, подайте на его вход сигнал частотой 2000 Гц и подстроечным резистором R6 установите стрелку микроамперметра на конечную отметку шкалы. После этого на вход прибора подайте от генератора сигнал частотой 200 Гц. При этом стрелка микроамперметра должна установиться против начальной отметки шкалы, соответствующей частоте 20 Гц первого поддиапазона. Точнее установить ее на эту исходную отметку шкалы можно заменой конденсатора СЗ или подключением параллельно ему второго конденсатора, несколько увеличивающего их общую емкость.

Аналогично подгоняйте под шкалу микроамперметра границы третьего поддиапазона измеряемых частот 2...20 кГц. Возможно, пределы измерения частоты на поддиапазонах получатся иные, или вы захотите изменить их. Делайте это подбором времязадающих конденсаторов С2-С4.

Улучшение чувствительности. А может быть вы пожелаете повысить чувствительность частотомера? В таком случае простейший частотомер придется дополнить усилителем входного сигнала, используя для этого, например, аналоговую микросхему К118УП1Г (рис.26). Эта микросхема представляет собой трехкаскадный усилитель для видеоканалов телевизионных приемников, обладающий большим коэффициентом усиления. Ее корпус с 14 выводами такой же, как у микросхемы К155ЛA3, но положительное напряжение источника питания подают на вывод 7, а отрицательное - на вывод 14. С таким усилителем чувствительность частотомера увеличится до 30...50 мВ.

Рис. 26. Усилитель, повышающий чувствительность простейшего частотомера

Колебания измеряемой частоты могут быть синусоидальными, прямоугольными, пилообразными - любыми. Через конденсатор С1 они поступают на вход (вывод 3) микросхемы DA1, усиливаются и далее через выходной вывод 10 (соединенный с выводом 9) и конденсатор СЗ подаются на вход триггера Шмитта частотомера. Конденсатор С2 устраняет внутреннюю отрицательную обратную связь, ослабляющую усилительные свойства микросхемы.

Диоды VD1, VD2 и резистор R1 (рис. 24) теперь можно удалить, а на их месте смонтировать, микросхему и дополнительные электролитические конденсаторы. Микросхему К118УП1Г можно заменить на К118УП1В или К118УП1А. Но в этом случае чувствительность частотомера несколько ухудшится.

Схема простого стрелочного частотомера показана на рисунке. Основу частотомера составляет триггер Шмитта и формирователь импульсов. Триггер Шмитта, будучи потенциальным реле, преобразует сигналы синусоидальной или другой формы в прямоугольные импульсы. Эти импульсы нельзя использовать для измерения, так как их длительность зависит от амплитуды входного сигнала. Их применяют для запуска формирователя импульсов на элементах DD1.3, DD1.4, которые в совокупности с R3 и одним из конденсаторов С2-С4 образуют линию задержки с фиксированной длительностью и амплитудой. Выходные импульсы подаются на прибор, отклонение стрелки которого из-за инертности подвижной системы пропорционально среднему току, протекающему через его рамку.

Схема стрелочного частотомера 20Гц-20кГц

VD1 VD2 ограничивают выходное напряжение. длительность выходного импульса формирователя определяется постоянной времени цепочки R3,C2-C4 и должна быть примерно в 5-10 раз меньше периода наивысшей измеряемой частоты. При указанных номиналах в схеме, наивысшая измеряемая частота равна 20 кГц. Подстроечные резисторы R5-R7 используются при калибровке частотомера на полное отклонение стрелки индикатора. Калибровку частотомера можно осуществлять по образцовому генератору или частотомеру. Шкала частотомера во всем диапазоне практически вся равномерная, поэтому надо только определить начальную и конечную границы шкалы.

Источник - Партин А.И. Популярно о цифровых микросхемах (1989)

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 22.09.2014

    Принципиальная схема ус-ва показана на рис.1, ус-во предназначено для управления коллекторным электродвигателем — дрель, вентилятор и так далее. На однопереходном транзисторе VT1 собран генератор коротких положительным импульсов для управления вспомогательным тринистором VS1. Питается генератор трапецеидальным напряжением, получаемым благодаря ограничению стабилитроном VD1 положительной полуволн синусоидального напряжения(100Гц). С появлением каждой полуволны такого …

  • 02.10.2014

    Этот источник питания предназначен для питания различных уст-в от напряжения 25-30В при токе 70мА от бортовой сети автомобиля. Мультивибратор на транзисторах с мощным выходом вырабатывает импульсы с частотой около 10кГц. Далее импульсы проходя через С3 С4 далее выпрямляются, при этом происходит обрезка импульсов с помощью VD1 VD2 для стабилизации выходного …

Схема очень простого цифрового частотомера на зарубежной элементной базе

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

В этой статье на сайте Радиолюбитель мы рассмотрим очередную простую радиолюбительскую схему частотомер . Частотомер собран на зарубежной элементной базе, которая подчас бывает доступнее отечественной. Схема проста и доступна для повторения начинающему радиолюбителю .

Схема частотомера :

Частотомер выполнен на измерительных счетчиках HFC4026BEY, микросхемах серии CD40 и семисегментных светодиодных индикаторах с общим катодом HDSP-H211H. При напряжении источника питания 12 вольт частотомер может измерять частоту от 1 Гц до 10 МГц.

Микросхема HFC4026BEY является представителем высокоскоростной КМОП логики и содержит десятичный счетчик и дешифратор для семисегментного светодиодного индикатора с общим катодом. Входные импульсы подаются на вход “С”, который имеет триггер Шмитта, что позволяет значительно упростить схему входного формирователя импульсов. Кроме того, вход счетчика “С” можно закрыть подав логическую единицу на вывод 2 микросхемы. Таким образом отпадает надобность во внешнем ключевом устройстве пропускающим импульсы на вход счетчика в период измерения. Выключить индикацию можно подав логический ноль на вывод 3. Все это упрощает схему управления частотомера.

Входной усилитель выполнен на транзисторе VT1 по схеме ключа. Он преобразует входной сигнал в импульсы произвольной формы. Прямоугольность импульсам придает триггер Шмитта, имеющийся на входе “С” микросхемы. Диоды VD1- VD4 ограничивают величину амплитуды входного сигнала. Генератор опорных сигналов выполнен на микросхеме CD4060B. В случае использования кварцевого резонатора на частоту 32768 Гц с вывода 2 микросхемы снимается частота 4 Гц, которая поступает на схему управления состоящего из десятичного счетчика D2 и двух RS триггеров на микросхеме D3. В случае использования резонатора на 16384 Гц (с китайских будильников) частоту 4 Гц нужно будет снимать не со 2 вывода микросхемы, а с 1-го.

Микросхему CD4060B можно заменить другим аналогом типа хх4060 (например NJM4060). Микросхему CD4017B можно заменить также другим аналогом типа хх4017, либо отечественной микросхемой К561 ИЕ8, К176 ИЕ8. Микросхема CD4001B прямой аналог наших микросхем К561ИЕ5, К176ИЕ5. Микросхему HFC4026BEY можно заменить ее полным аналогом CD4026, но при этом максимальная измеряемая частота будет 2 МГц. Схема входного ула частотомера примитивная, ее можно заменить каким-то более совершенным узлом.

В тематический план кружка 3-го года занятий надо включить изучение и конструирование устройств цифровой техники повышенной сложности, например цифрового частотомера.

Примером такого измерительного прибора может стать описываемый здесь пятиразрядный частотомер с цифровой индикацией результатов измерения, разработанный в радиокружке станции юных техников г. Березовский Свердловской области под руководством В. Иванова. Прибор позволяет измерять частоту электрических колебаний в пределах 100...99999 Гц и может быть использован для настройки различных генераторов, электронных часов, устройств автоматики. Амплитуда входного сигнала - 1...30 В.

Рис. 130. Структурная схема цифрового частотомера

Структурная схема частотомера показана на рисунке 130. Его основные элементы: формирователь импульсного напряжения сигнала fх измеряемой частоты, генератор образцовой (эталонной) частоты, электронный ключ, счетчик импульсов с блоком цифровой индикации и управляющее устройство, организующее работу прибора. Принцип его действия основан на измерении числа импульсов, поступающих на вход счетчика в течение строго определенного времени, равного в данном приборе 1 с. Этот необходимый измерительный интервал времени формируется в блоке управления.

Сигнал fх, частоту которого надо измерить, подают на вход формирователя импульсного напряжения. Здесь он преобразуется в импульсы прямоугольной формы, частота следования которых соответствует частоте входного сигнала. Далее преобразованный сигнал поступает на один из входов электронного ключа, А на второй вход ключа подается сигнал измерительного интервала времени, удерживающий его в открытом состоянии в течение 1с.

В результате на выходе электронного ключа, а значит, и на входе счетчика появляется пачка импульсов. Логическое состояние счетчика, в котором он оказывается после закрывания ключа, отображает блок цифровой индикации в течение интервала времени, устанавливаемого устройством управления.

Принципиальная схема частотомера показана на рисунке 131. Кроме транзисторов, в частотомере используют восемь цифровых микросхем серии К176 и пять (по числу разрядов) семисегментных люминесцентных индикаторов типа ИВ-6. В микросхему К176ИЕ12 (D1), предназначаемую специально для электронных часов, входит генератор (условный символ G), рассчитанный на совместную работу с внешним кварцевым резонатором Z1 на частоту 32 768 Гц. Делители частоты микросхемы делят частоту генератора до 1 Гц. Эта частота, формируемая на соединенных вместе выводах 4 и 7 микросхемы, и является в частотомере образцовой.

В микросхеме К176ЛЕ5 (D2) четыре логических элемента 2ИЛИ-НЕ, а в микросхеме К176ТМ1 (D3) -два D-триггера. Один из элементов 2ИЛИ-НЕ выполняет функцию электронного ключа (D2.4), а три других и оба D-триггера работают в устройстве управления.

Каждая из микросхем К176ИЕ4 (D4-D8) содержит декадный счетчик импульсов, т. е. счетчик до 10, и преобразователь (дешифратор) ее логического состояния в сигналы управления семи-сегментным индикатором. На выходах а-д этих микросхем формируются сигналы, обеспечивающие индикаторам Н1 - Н5 свечение цифр, значение которых соответствует логическому состоянию счетчиков. Микросхема D4 и индикатор H1 образуют младший счетный разряд, а микросхема D8 и индикатор Н5 - старший счетный разряд частотомера.

В конструкции прибора индикатор Н5 д6лжен быть крайним слева, а H1 - крайним справа.

Для питания микросхем, транзисторов и управляющих электродов индикаторов можно использовать две соединенные последовательно батареи 3336Л (GB1), а для питания нитей накала индикаторов - один элемент 343 или 373 (G1).

Формирователь импульсного напряжения образуют транзисторы V2-V5. Сигнал fx, поданный на его вход через гнездо X1, переключатель S1, конденсатор С1 и резистор R1, усиливается и ограничивается по амплитуде дифференциальным каскадом на транзисторах V2 и УЗ. С нагрузочного резистора R5 сигнал поступает на базу транзистора V4 второго каскада, работающего как инвертор. Резистор R8, создающий между этими каскадами положительную обратную связь, обеспечивает им триггерныи характер работы. При этом на коллекторе транзистора V4 формируются импульсы с крутыми фронтами и спадами, частота следования которых соответствует частоте исследуемого сигнала. Каскад на транзисторе V5 ограничивает напряжение импульсов до уровня, обеспечивающего микросхемам необходимый режим работы Далее преобразованный сигнал поступает на входной вывод 12 электронного ключа D2.4. Второй входной вывод ключа подключен к выходу формирователя измерительного интервала времени, равного 1 с. Поэтому число импульсов, прошедших за это время через электронный ключ к счетчику, высвечивается индикаторами в единицах Герц.

Рис. 132. Временные диаграммы, иллюстрирующие работу управляющего устройства частотомера

Работу управляющего устройства иллюстрируют временные диаграммы (рис. 132).

На вход С (вывод 11) триггера D3.2 непрерывно поступают импульсы генератора образцовой частоты (рис. 132,а), а на такой же вход триггера D3.1 - импульсы генератора запуска, собранного на логических элементах D2.1 и D2.2 (рис. 132, б). За исходный примем случай, когда оба триггера находятся в нулевом состоянии. В это время напряжение высокого уровня, действующее на инверсном выходе триггера D3.2, поступает на входной вывод 13 электронного ключа D2.4 и закрывает его. С этого момента через ключ прекращается прохождение импульсов сигнала измеряемой частоты на вход счетчика. С появлением на входе С триггера D3.1 импульса генератора запуска этот триггер принимает единичное состояние и напряжением высокого уровня на прямом выходе подготавливает триггер D3.2 к дальнейшей работе. Одновременно на выводе 9 элемента D2.3, соединенном с инверсным выходом триггера D3.1, появляется напряжение низкого уровня. Очередной импульс генератора образцовой частоты переключает триггер D3.2 в единичное состояние. Теперь на его инверсном выходе и на выводе 13 элемента D2.4 будет напряжение низкого уровня, которое открывает электронный ключ и тем самым разрешает прохождение через него импульсов сигнала измеряемой частоты.

Прямой выход триггера D3.2 (вывод 13) соединен с R-входом (вывод 4) триггера D3.1. Следовательно, когда триггер D3.2 оказывается в единичном состоянии, он, воздействуя напряжением высокого уровня на прямом выходе переключает триггер D3.1 в нулевое состояние. Этот триггер находится в нулевом, состоянии до тех пор, пока сохраняется интервал измерительного времени. Очередной импульс генератора образцовой частоты на входе С триггера D3.2 переключает его в нулевое состояние и напряжением высокого уровня на инверсном выходе закрывает электронный ключ. В результате прекращается прохождение импульсов сигнала измеряемой частоты к счетчику и начинается цифровая индикация результатов измерения (рас 132,(5, ж).

Каждому интервалу измерительного времени предшествует появление на выводах 5 R-входов микросхем D4-D8 кратковременного импульса положительной полярности (рис. 132, г), сбрасывающего триггеры счетчика в нулевое состояние. С этого момента и начинается цикл счет - индикация работы частотомера. Формирование импульсов сброса происходит на выходе логического элемента D2.3 в моменты совпадения на его входах напряжений низкого уровня. Время индикации можно плавно изменять в пределах 2...5 с резистором R17 генератора импульсов запуска.

Светодиод V7 в коллекторной цепи транзистора V6, работающего в режиме ключа, служит для визуального наблюдения, за длительностью времени индикации.

В частотомере предусмотрена возможность контроля его работоспособности. Для этого переключатель S1 переводят в положение «Контроль», при котором входная цепь прибора оказывается соединенной с выводом 14 микросхемы D1 генератора образцовой частоты. При исправной работе частотомера индикаторы должны высвечивать частоту 32 769 Гц.

Рис. 133. Внешний вид частотомера

Внешний вид описанного частотомера показан на рисунке 133. Через удлиненное прямоугольное отверстие в лицевой стенке корпуса, прикрытое пластинкой зеленого органического стекла, хо-
рошо видны светящиеся цифры индикаторов. Слева от отверстия расположен «глазок» светодиодного индикатора V7. Под ним находится переменный резистор R17 установки длительности индикации результата измерения и входное гнездо X1. Слева от них -выключатель питания S2 («Я») и двухсекционный переключатель S1 «Измерение-контроль». При нажатии на кнопку «K» (контроль) вход формирователя импульсного напряжения подключается к генератору образцовой частоты, а при нажатии на кнопку «И» (измерение) - к входному гнезду X1.

Другие детали частотомера смонтированы на двух печатных платах размерами 115X60 мм, выполненных из фольгированного стеклотекстолита толщиной 1 мм. На одной из них (рис. 134, а) находятся детали формирователя импульсного напряжения, генератора образцовой частоты и устройства управления, на другой (рис 134, б)-микросхемы D4-D8 и цифровые индикаторы H1- Н5. Все постоянные резисторы типа МЛТ. Подстроечный резистор R3 - СПЗ-16, переменный R17 может быть любого типа. Оксидные конденсаторы СЗ и С5- К50-6 или К53-1А, неполярные С1 и С8 - К53-7 (можно заменить наборами конденсаторов типа К73-17). Конденсаторы С2, С4 могут быть типа КЛС или К73-17, С6 - керамический КТ-1, КМ, подстроечный конденсатор С7- КПК-МП. Переключатель S1 «Измерение-контроль» образуют два кнопочных переключателя П2К с зависимой фиксацией в нажатом положении; выключатель питания S2 - тоже П2К, но без фиксации, т. е. с возвратом в исходное положение при повторном нажатии на кнопку.

Микросхему К176ИЕ12 можно заменить на подобную ей микросхему К176ИЕ5, скорректировав соответственно печатные проводники монтажной платы. Цифровые индикаторы могут быть типа ИВ-3А (вместо ИВ-6), но тогда в цепь питания их нитей накала надо будет включить резистор сопротивлением 2 Ом на мощность рассеяния 0,5 Вт.

Налаживание безошибочно смонтированного частотомера сводится в основном к установке наилучшей чувствительности формирователя импульсного напряжения и, если надо, к подстройке генератора образцовой частоты. При установке необходимой чувствительности на вход частотомера подают от генератора 34 сигнал с амплитудой 1 В, к выходу электронного ключа D2.4 подключают осциллограф и подстроечный резистором R3 добиваются появления на экране осциллографа пачек импульсов. Подстройку образцовой частоты генератора производят: грубо - подбором конденсатора С6, точно - подстроечный конденсатором С7. Точность настройки контролируют по образцовому частотомеру, подключенному к выводу 14 микросхемы D1.

При настройке радиотелефона, описанного в , возникли проблемы с поиском недорогого корпуса трубки. Случайно под руки попался неисправный калькулятор, который ремонту не подлежал из-за особенностей электрической схемы - так называемый "пустой корпус" и БИС в виде одной плоской капли на монтажной плате. Сам по себе изящный корпус HL-812E размером 125x70x18 мм было жалостно выбросить, и после некоторых раздумий было решено попробовать собрать схему трубки радиотелефона. Довольно глубокая ниша размером 54x78x8 мм в принципе давала вероятность разместить все детали при небольшой доработке нижней крышки (пришлось просверлить и вырезать в ней два отверстия: под капсюль микрофона - в нижнем правом углу, и телефона - в верхнем правом углу). Для установки телескопической антенны просверлено отверстие в левой части верхнего торца корпуса калькулятора. Нижний конец антенны закреплен с помощью маленькой скобы к плате бывшего калькулятора. Дорожки, идущие к БИС от кнопок 0; 1; 2; 3; ...9; "OFF"; "С" и "АС" нужно перерезать и распаять к соответствующим точкам схемы трубки (рис. Т160 схема регулятора тока 1 в ). При сборке применены малогабаритные резисторы УЛМ-0,12, конденсаторы КД, КМ-6, К10-17 и К50-40, электролитические конденсаторы серии К53-30. Вместо УЛМ-0,12 можно применить резисторы типа МЛТ-0,125 Вт. Батарейный отсек в верхней части калькулятора (под ЖКИ индикатором) используется по своему прямому назначению - для размещения аккумулятора питания трубки. Вся собранная схема закрыта самодельной защитной крышкой размером 105x55 мм, закрепляемой саморезами через штатные отверстия корпуса.Неиспользуемые кнопки клавиатуры, такие как "V ";"%"; "MR"; "M-"; "М+"; V; "х";"-";"+"; "=";".", можно прикрыть самодельными, из пластмассы такого же цвета, что и корпус, заглушками, приклеив их к плате калькулятора. В кнопке"+" следует просверлить несколько отверстий диаметром 1,5...2,0 мм. К плате данную кнопку не приклеивают, так как она закрывает микрофон и крепится клеем к верхней крышке. Также в верхней крышке нужн...

Для схемы "Цифровой ревербepaтор"

Цифровая техникаЦифровой ревербepaторГ. Брагин. RZ4HK г. ЧапаевскЦифровой ревербератор предназначается для создания эхо-эффекта за счет задержки звукового сигнала, подаваемого на балансный модулятор трансивера. Задержанный НЧ сигнал, оптимально смешанный с основным, придает передаваемому сигналу специфическую окраску, что улучшает разборчивость при проведении радиосвязи в условиях помех, делает его "накачанным" - считается, что при этом снижается пик-фактор. (Но кто-бы мне это доказал? RW3AY) (Иллюзия снижения пик-фактора речи появляется за счет заполнения интервалов между периодами основного тона речи, задержанным во времени тем же сигналом. (RX3AKT))Ревербератор, приведенный на рис.1, состоит из микрофонного и выходного суммирующего усилителей, собранных на сдвоенном операционном усилителе К157УД2, аналого-цифрового (АЦП) и цифро-аналогового (ЦАП) преобразователей - микросхемы К554САЗ и К561ТМ2 и узла задержки, выполненного на микросхеме К565РУ5. В схеме кодировки адресов применяются микросхемы К561ИЕ10иК561ПС2. Принцип работы подобного ревербератора довольно подробно был изложен в . Резистором R1, изменяя частоту тактового генератора, можно регулировать час задержки. Резисторами R2 и R3 подбирается глубина и уровень реверберации, соответственно. Манипулируя этими резисторами, оптимизируется работа всего ревербератора. Конденсаторами, обозначенными (*), нужно достичь наилучшего качества сигнала по минимуму шумов. Большие искажения в задержанном сигнале свидетельствуют о неисправной микросхеме в узле кодировки адресов. Ревербератор собран на печатной плате из двухстороннего стеклотекстолита 130х58 мм. После сборки и настройки плата помещается в металлическую экранирующую коробочку соответствующего размера. Литература1. "В помощь радиолюбителю" № 95, стр.29. 2. Журнал "Радио" N 1 - 86...

Для схемы "Приемник на микросхеме TDA7000 (174XA42)"

РадиоприемРадиоприемник на микросхеме >TDA7000 (174XA42)/img/tda7000.gifДиапазон частот микросхемы 1,5-150 МГц.В скобках указаны номиналы конденсаторов для узкополосной ЧМ(при этом 3-ю ножку микросхемы можно оставить свободной).Чертеж печатной платы со стороны проводниковЧертеж печатной платы со стороны элементовЛитература:1. К174ХА42 - однокристальный ЧМ приемник. N 1 1997 г.2. Однокристальные ЧМ приемники. Радио N 2 1997 г.3. Радиоприемные устройства на микросхеме К174ХА42А. N 5 1997 г....

Для схемы "VOX В ТРАНСИВЕРЕ UA3RR"

Узлы радиолюбительской техникиVOX В ТРАНСИВЕРЕ UA3RRЕ. ЖЕБРЯКОВ, г. Борислав Львовской обл. Схема устройства голосового менеджмента (VOX) трансивером конструкции И. Чуканова-UA3RR ("Радио". 1973, № 11) приведена на рисунке.Переключатель В1 при работе с VOX блокирует контакты Кн1 и подает питание на устройство, а при работе с менеджментом педалью блокирует конткаты Р8/1 реле Р8 и отключает питание. № 7, 1975 г. с.15...

Для схемы "Компьютерный ТВ-тюнер в роли частотомера"

Так уж случилось, что у меня нет с возможностью измерения частот выше 100 МГц. И проблема отнюдь не в том. что не из чего собрать необходимый делитель частоты и прибавить ещё один разряд в уже имеющийся самодельный частотомер на микропроцессоре 1030ВЕ31. Дело в том. что частоты выше 100 МГц приходится измерять не чаще раза в несколько лет. и необходимости в гаком приборе, как будто бы, нет. Но все же, нет-нет, да и понадобится, а как же тогда быть?Как-то в одном из журналов для радиолюбителей рассказывалось о том. что частоту можно измерять с помощью УКВ-приемника с цифровой индикацией частоты. Речь шла о популярных в 90-х годах прошлого века карманных "китайских" радиоприемниках с низкой ПЧ и автосканированием УКВ диапазона (65. .110 МГц). 8 настоящее пора для измерения существенно большего диапазона частот можно использовать компьютерный ТВ-тюнер, предназначенный для приема аналоговых сигналов эфирного или кабельного телевидения.Если имеется внутренний PCI или PCI-Express тюнер, то чтобы превратить его в частотомер, довольно изготовить простейший переходник по схеме, показанной на рис.1. Т160 схема регулятора тока Переходник состоит из отрезка коаксиального кабеля длиной до 2 м, резистора, конденсатора, стандартного антенного штекера, зажима "крокодил", иглы-щупа и 4-5 ферритовых цилиндриков 600НН от контуров ПЧ старых радиоприемников. Цилиндрики нанизываются на кабель со стороны подключения к тюнеру. Коаксиальный кабель подключается к антенному гнезду тюнера, "крокодил" - к общему проводу ("массе") тестируемого устройства, а щуп - к местам прохождения ВЧ-сигнала. благодаря высокой чувствительности ТВ-тюнеров, иглу щупа в большинстве случаев более того не придется подключать, например, к выводам обмоток контура, выводам транзистора или кварца. Достаточно просто поднести шуп на расстояние 2...10 мм, и он, как антенна, "поймает" измеряемую частоту.Чтобы провес...

Для схемы "УСОВЕРШЕНСТВОВАНИЕ ТРАНСИВЕРА UW3DI"

Радиопередатчики, радиостанцииУСОВЕРШЕНСТВОВАНИЕ ТРАНСИВЕРА UW3DIА. ЖУКОВСКИЙ (UB5UWI), г. КиевДля повышения оперативности и удобства при работе в режиме CW целесообразно в лампово-полупроводниковом трансивере UW3D1 уменьшить пора задержки системы VOX по сравнению с режимом SSB. Для этого в режиме CW параллельно резистору 1-R4 включают прибавочный резистор. Изменения, которые нужно ввести в VOX трансивера (см. Ю. Кудрявцев. Лампово-полупроводниковый трансивер. - "Радио", 1974, № 4), отмечены на рисунке штриховыми линиями.РАДИО11. 1982 г. с.20....

Для схемы "Усилители на основе логических ИМС"

Радиолюбителю-конструкторуУсилители на основе логических ИМСУ многих радиолюбителей скопились микросхемы старых типов, которые и выбросить жалостно, и приспособить некуда. Так вот цифровый интегральные микросхемы (простая логика) могут с успехом применяться в качестве аналоговых усилителей. Схемы включения и параметры усилителей для некоторых серий микросхем приведены ниже на рисунке и в таблице.Серия П а р а м е т рРис.КFизм, МГцFmax, МГцР, мВт Uвых, В Rвх, КомRвых, КомR1, КомR2, КомR3, КомKp, дб11311417817613613413113713315546,025,015,012,58,018,020,04,88,08,00,0010,10,10,11,03,01,020,01,01,00,060,350,250,22,55,540,050,040,040,00,2520,2535,065,05,02,0125,050,020,020,02,02,78,05,01,21,52,00,51,21,224,07,0--0,60,40,20,50,60,620,05,03,06,00,050,050,030,050,050,051,61,68,06,20,687,51,00,750,680,68--2,04,00,685,11,01,60,680,68-------1,0--30583650303030253025ааггбббвбб "Радиотехника" N 8, 1980 г....

Для схемы "Высокоэффективный балансный модулятор-детектор"

Узлы радиолюбительской техникиВысокоэффективный балансный модулятор-детекторМ.Саттаров. пос.Иноземцево Ставропольского краяМир состоит из парадоксов - открытия делают те, кто просто не знает, что так совершать нельзя, и делают... и открывают! Может в изложенной в этом месте идее что-то есть? Теоретики! Найдите объяснение факту. И, пожалуйста, будьте снисходительны. RX3AKT.Для повышения эффективности смесителей на полевых транзисторах в пассивном режиме просторно используется прямоугольная форма управляющих импульсов. Более эффективным способом повышения разборчивости, на мои взгляд, является использование узких импульсов, когда длительность единичного состояния составляет сотые и более того тысячные доли нулевой длительности. (Красиво сказано, не правда-ли?) На слух это воспринимается как подъем высоких частот. Резко повышается разборчивость речевого сигнала. Частотная характеристика становится более равномерной. Балансный модулятор-детектор, рис.1, собран по известной схеме А.Погосова (см. Т160 схема регулятора тока "Радио" №10-81). менеджмента содержит кварцевый генератор, собранный на микросхеме DD1, делитель частоты на 4 (он же фазовращатель) - на МС DD2 и фазовый дискриминатор на МС DD3 и DD4. Сигнал прямоугольной формы с кварцевого генератора 1 МГц поступает на цифровой фазовращатель (делитель на 4). С его выхода снимаются два противофазных сигнала с частотой 250 кГц. Известно, что в противофазном сигнале вечно имеется некоторая ошибка в разности фаз, связанная с нестабильной работой фазовращателя, которая и выделяется фазовым дискриминатором. Выделенный фазовым дискриминатором сигнал, пропорциональный ошибке фазовращателя, является опорной частотой для балансного модулятора-детек-тора, с...

Для схемы "ЧАСТОТОМЕР"

Измерительная техникаЧАСТОТОМЕР Параметры предлагаемого частотомера приведены в табл. 1.Режим работыЧастотомерЧастотомерЦифровая шкалаДиапазон измерений1 Гц..20 МГц1 МГц..200 МГц1 МГц..200 МГцДискретность1Гц10 Гц100 ГцЧувствительность40 мВ100 мВ100 мВДанный частотомер, на мои взгляд, обладает целым рядом преимуществ по сравнению с предшествующими:- современная дешевая и легко доступная элементная база;- максимальная измеряемая частота - 200 МГц;- совмещение в одном приборе и цифровой шкалы;- вероятность увеличения максимальной измеряемой частоты до 1,2 ГГц при незначительной доработке входной части прибора;- вероятность коммутации во час работы до 4 ПЧ.Измерение частоты осуществляется классическим способом: подсчет количества импульсов за фиксированныйинтервал времени.Принципиальная схема представлена на рис.1.Входной сигнал через конденсатор С4 поступает на базу транзистора VT1, который усиливает входной сигнал до уровня, необходимого для нормальной работы микросхемы DD2. Автоматическое отключение радиоаппаратуры Микросхема DD2 193ИЕЗ представляет собой высокочастотный делитель частоты, коэффициент деления которого равен10. Ввиду того что в используемое микроконтроллере К1816ВЕ31 максимальная частота счетного входа Т1 f=Fкв/24, где Fкв - частота используемого кварца, а в частотомере Fкв=8,8672 МГц, сигнал с высокочастотного делителя поступает на прибавочный делитель частоты, представляющий собой десятичный счетчик DD3. Процесс измерения частоты начинается с обнуления делителя DD3, сигнал сброса которого поступает с вывода 12 микроконтроллера DD4. Сигнал разрешения прохождения измеряемого сигнала на десятичный делитель поступает с вывода 13 DD4 через инвертор DD1.1 на вывод 12 DD1.3.По окончании фиксированного интервала времени и...

Для схемы "ЧАСТОТОМЕР - ЦИФРОВАЯ ШКАЛА"

Измерительная техникаЧАСТОТОМЕР - ЦИФРОВАЯ ШКАЛАУстройство выполняет следующие функции: - с выводом измеренного значения частоты в герцах (до 8 разрядов); - цифровой шкалы с АПЧ генератора плавного диапазона (ГПД) для радиолюбительского трансивера; - электронных часов. Основу устройства составляет программируемый контроллер PIC16F84 фирмы MICROCHIP. Большое быстродействие и широкие функциональные возможности этого контроллера позволяют подавать сигнал частотой до 50 МГц прямо на его счетный вход, т.е. можно обойтись без предварительного делителя, обычно применяемого в устройствах подобного типа. Основные параметры Диапазон измеряемых частот, МГц 0...50 Диапазон программируемых значений ПЧ, МГц 0...16 Минимальный уровень входного сигнала, мВ 200 Время измерения частоты, с 1 Погрешность измерения, Гц ±1 Напряжение питания, В 5±0,5 Ток потребления устройства, мА, не более 30Наличие электрически перепрограммируемой памяти данных внутри PIC16F84 позволило без специального оборудования перепрограммировать роль промежуточной частоты (ПЧ). Т160 схема регулятора тока Это дает вероятность оперативно встраивать цифровую шкалу в трансивер с любым (О... 16 МГц) значением промежуточной частоты. В качестве устройства индикации применен модуль ЖКИ от телефонных аппаратов типа "PANAPHONE". Ввод информации в модуль осуще-ствляется по двум линиям в последовательном коде. Полезной оказалась встроенная функция электронных часов. Малый ток потребления обуславливает малые помехи радиоприемной аппаратуре, в которую может встраиваться данное устройство. Схема устройства приведена на рис.1. На транзисторе VT1 и микросхеме DD1 выполнен формирователь входного сигнала. Микросхема DD2 выполняет функции контроллера частотомера, цифровой шкалы с АПЧ, менеджмента модулем ЖКИ, а также позволяет оперативно изменять режим работы устройства. Если на выводе 1 микросхемы DD2 присутствует уровень логической "1", то устрой...

Загрузка...