bookingsky.ru

Трансформатор тока из чего состоит. Принцип работы трансформатора и типы приборов. Назначение измерительных трансформаторов

При эксплуатации энергетических систем часто возникает необходимость преобразования определенных электрических величин в подобные им аналоги с пропорционально измененными значениями. Это позволяет моделировать определенные процессы в электроустановках, безопасно выполнять измерения.

Работа трансформатора тока (ТТ) основана на , действующего в электрических и магнитных полях, изменяющихся по форме гармоник переменных синусоидальных величин.

Он преобразует первичную величину вектора тока, протекающего в силовой цепи, во вторичное пониженное значение с соблюдением пропорциональности по модулю и точной передачей угла.

Принцип работы трансформатора тока

Демонстрацию процессов, происходящих при преобразованиях электрической энергии внутри трансформатора, поясняет схема.

Через силовую первичную обмотку с числом витков w1 протекает ток I1, преодолевая ее полное сопротивление Z1. Вокруг этой катушки формируется магнитный поток Ф1, который улавливается магнитопроводом, расположенным перпендикулярно направлению вектора I1. Такая ориентация обеспечивает минимальные потери электрической энергии при ее преобразовании в магнитную.

Пересекая перпендикулярно расположенные витки обмотки w2, поток Ф1 наводит в них электродвижущую силу Е2, под влиянием которой возникает во вторичной обмотке ток I2, преодолевающий полное сопротивление катушки Z2 и подключенной выходной нагрузки Zн. При этом на зажимах вторичной цепи образуется падение напряжения U2.

Величина К1, определяемая отношением векторов I1/I2, называется коэффициентом трансформации . Ее значение задается при проектировании устройств и замеряется в готовых конструкциях. Отличия показателей реальных моделей от расчетных значений оценивается метрологической характеристикой - классом точности трансформатора тока .

В реальной работе значения токов в обмотках не являются постоянными величинами. Поэтому коэффициент трансформации принято обозначать по номинальным значениям. Например, его выражение 1000/5 означает, что при рабочем первичном токе 1 килоампер во вторичных витках будет действовать нагрузка 5 ампер. По этим значениям и рассчитывается длительная эксплуатация этого трансформатора тока.

Магнитный поток Ф2 от вторичного тока I2 уменьшает значение потока Ф1 в магнитопроводе. При этом создаваемый в нем поток трансформатора Фт определяется геометрическим суммированием векторов Ф1 и Ф2.

Опасные факторы при работе трансформатора тока

Возможность поражения высоковольтным потенциалом при пробое изоляции

Поскольку магнитопровод ТТ выполнен из металла, обладает хорошей проводимостью и соединяет между собой магнитным путем изолированные обмотки (первичную и вторичную), то возникает повышенная опасность получения электротравм персоналом или повреждения оборудования при нарушениях изоляционного слоя.

С целью предотвращения таких ситуаций используется заземление одного из вторичного выводов трансформатора для стекания через него высоковольтного потенциала при авариях.

Эта клемма всегда имеет обозначение на корпусе прибора и указывается на схемах подключения.

Возможность поражения высоковольтным потенциалом при разрыве вторичной цепи

Выводы вторичной обмотки маркируют «И1» и «И2» так, чтобы направление протекающих токов было полярным, совпадало по всем обмоткам. При работе трансформатора они всегда должны быть подключены на нагрузку.

Объясняется это тем, что проходящий по первичной обмотке ток обладает мощностью (S=UI) высокого потенциала, которая трансформируется во вторичную цепь с малыми потерями и при разрыве в ней резко уменьшается составляющая тока до значений утечек через окружающую среду, но при этом значительно возрастает падение напряжения на разорванном участке.

Потенциал на разомкнутых контактах вторичной обмотки при прохождении тока в первичной схеме может достигать нескольких киловольт, что очень опасно.

Поэтому все вторичные цепи трансформаторов тока постоянно должны быть надежно собраны, а на выведенных из работы обмотках или кернах всегда устанавливаются шунтирующие закоротки.

Конструкторские решения, используемые в схемах трансформаторов тока

Любой трансформатор тока, как электротехническое устройство, предназначен для решения определенных задач при эксплуатации электроустановок. Промышленность выпускает их большим ассортиментом. Однако, в некоторых случаях при усовершенствовании конструкций бывает проще использовать готовые модели с отработанными технологиями, чем заново проектировать и изготавливать новые.

Принцип создания одновиткового ТТ (в первичной схеме) является базовым и показан на картинке слева.

Здесь первичная обмотка, покрытая изоляцией, выполнена прямолинейной шиной Л1-Л2, проходящей через магнитопровод трансформатора, а вторичная намотана витками вокруг него и подключена на нагрузку.

Принцип создания многовиткового ТТ с двумя сердечниками, показан справа. Здесь берется два одновитковых трансформатора со своими вторичными цепями и через их магнитопроводы пропускается определенное количество витков силовых обмоток. Таким способом не только усиливается мощность, но дополнительно увеличивается количество выходных подключаемых цепочек.

Три этих принципа могут быть модифицированы различными способами. Например, применение нескольких одинаковых обмоток вокруг одного магнитопровода широко распространено для создания отдельных, независимых друг от друга вторичных цепей, которые работают в автономном режиме. Их принято называть кернами. Таким способом подключают различные по назначению защиты выключателей или линий (трансформаторов) к токовым цепям одного трансформатора тока.

В устройствах энергетического оборудования работают комбинированные трансформаторы тока с мощным магнитопроводом, используемом при аварийных режимах на оборудовании, и обычным, предназначенным для замеров при номинальных параметрах сети. Обмотки, навитые вокруг усиленного железа, используют для работы защитных устройств, а обычные - для измерений тока или мощности/сопротивления.

Их так и называют:

    защитными обмотками, маркируемыми индексом «Р» (релейные);

    измерительными, обозначаемыми цифрами метрологического класса точности ТТ, например, «0,5».

Защитные обмотки при нормальном режиме работы трансформатора тока обеспечивают измерение вектора первичного тока с точностью 10%. Их по этой величине так и называют - «десятипроцентными».

Погрешности измерений

Принцип определения точности работы трансформатора позволяет оценить его схема замещения, показанная на картинке. В ней все значения первичных величин условно приведены к действию во вторичных витках.

Схема замещения описывает все процессы, действующие в обмотках с учетом энергии, затрачиваемой на намагничивание сердечника током I.

Построенная на ее основе векторная диаграмма (треугольник СБ0) свидетельствует, что ток I2 отличается от значений I’1 на величину I нам (намагничивания).

Чем выше эти отклонения, тем ниже точность работы трансформатора тока. Чтобы учесть ошибки измерения ТТ введены понятия:

    относительной токовой погрешности, выражаемой в процентах;

    угловой погрешности, вычисляемой длиной дуги АБ в радианах.

Абсолютную величину отклонения векторов первичного и вторичного тока определяет отрезок АС.

Общепромышленные конструкции трансформаторов тока выпускаются для работы в классах точности, определяемых характеристиками 0,2; 0,5; 1,0; 3 и 10%.

Практическое применение трансформаторов тока

Разнообразное количество их моделей можно встретить как в маленьких электронных приборах, размещенных в небольшом корпусе, так и в энергетических устройствах, занимающих значительные габариты в несколько метров. Они разделяются по эксплуатационным признакам.

Классификация трансформаторов тока

По назначению их разделяют на:

  • измерительные, осуществляющие передачу токов на приборы измерения;
  • защитные, подключаемые к токовым цепям защит;
  • лабораторные, обладающие высоким классом точности;
  • промежуточные, используемые для повторного преобразования.

При эксплуатации объектов используют ТТ:

    наружного монтажа на открытом воздухе;

    для закрытых установок;

    встроенные в оборудование;

    накладные - надеваемые на проходной изолятор;

    переносные, позволяющие делать замеры в разных местах.

По величине рабочего напряжения оборудования ТТ бывают:

    высоковольтными (более 1000 вольт);

    на значения номинального напряжения до 1 киловольта.

Также трансформаторы тока классифицируют по способу изоляционных материалов, количеству ступеней трансформации и другим признакам.

Выполняемые задачи

Для работы цепей учета электрической энергии, измерений и защит линий или силовых автотрансформаторов используются выносные измерительные трансформаторы тока.

На фото ниже показано их размещение для каждой фазы линии и монтаж вторичных цепей в клеммном ящике на ОРУ-110 кВ для силового автотрансформатора.

Эти же задачи выполняют трансформаторы тока на ОРУ-330 кВ, но, учитывая сложность более высоковольтного оборудования, они имеют значительно большие габариты.

На энергетическом оборудовании часто применяют встроенные конструкции трансформаторов тока, которые размещают прямо на корпусе силового объекта.

Они имеют вторичные обмотки с выводами, размещаемыми вокруг высоковольтного ввода в герметичном корпусе. Кабели от зажимов ТТ проложены к прикрепленным здесь же клеммным ящикам.

Внутри высоковольтных трансформаторов тока чаще всего в качестве изолятора используется специальное трансформаторное масло. Пример такой конструкции показан на картинке для трансформаторов тока серии ТФЗМ, рассчитанной на работу при 35 кВ.

До 10 кВ включительно используются твердые диэлектрические материалы для изоляции между обмотками при изготовлении корпуса.

Примером может служить трансформатор тока марки ТПЛ-10, используемый в КРУН, ЗРУ и других видах распределительных устройств.

Пример подключения вторичной токовой цепи одного из кернов защит REL 511 для выключателя линии 110 кВ демонстрирует упрощенная схема.

Неисправности трансформатора тока и способы их отыскания

У включенного под нагрузку трансформатора тока может нарушиться электрическое сопротивление изоляции обмоток или их проводимость под действием теплового перегрева, случайных механических воздействий либо из-за некачественного монтажа.

В действующем оборудовании чаще всего повреждаются изоляция, что приводит к межвитковым замыканиям обмоток (снижению передаваемой мощности) или возникновению токов утечек через случайно созданные цепи вплоть до КЗ.

С целью выявления мест некачественного монтажа силовой схемы периодически проводятся осмотры работающей схемы тепловизорами. На их основе своевременно устраняются дефекты нарушенных контактов, уменьшается перегрев оборудования.

Проверку отсутствия межвитковых замыканий осуществляют специалисты лабораторий РЗА:

    снятием вольтамперной характеристики;

    прогрузкой трансформатора от постороннего источника;

    замерами основных параметров в рабочей схеме.

Они же анализируют величину коэффициента трансформации.

При всех работах оценивается соотношение между векторами первичных и вторичных токов по величине. Отклонения их по углу не осуществляется из-за отсутствия высокоточных фазоизмерительных устройств, которые применяются при поверках трансформаторов тока в метрологических лабораториях.

Высоковольтные испытания диэлектрических свойств возложены на специалистов лаборатории службы изоляции.

Трансформаторы тока широко используются в современной энергетике как оборудование по изменению различных электрических параметров в аналогичные с сохранением основных значений. Работа оборудования базируется на законе индукции, который актуален для полей магнитного и электрического типа, меняющихся синусоидально. Трансформатор преображает первичное значение тока с соблюдением модуля и передачи угла пропорционально исходным данным. Выбирать оборудование требуется, исходя из сферы использования приборов и количества подключенных потребителей.

Данное оборудование используется в промышленности, городских коммуникациях и инженерных сетях, на производстве и в других сферах для подачи тока с определенными физическими параметрами. Подача напряжения производится на витки первичной обмотки, где в результате воздействия магнитного излучения образуется переменный ток. Это же излучение проходит по остальным виткам, за счет чего происходит движение сил ЭДС, а при закоротивших вторичных витках или при подключении к электроцепи в системе появляется вторичный ток.

Современные трансформаторы тока позволяют преобразовывать энергию с такими параметрами, чтобы ее применение не позволило нанести вред оборудованию, которое работает на ней. Кроме того, они дают возможность измерить повышенную нагрузку с максимальной безопасностью для техники и персонала, поскольку витки первичного и вторичного ряда имеют надежную изоляцию друг от друга.

Назначение трансформаторов

Определить, для чего нужен трансформатор тока, достаточно просто: сфера применения включает все отрасли, в которых происходит преобразование энергетических величин. Эти устройства относятся к числу вспомогательного оборудования, которое используется параллельно с измерительными приборами и реле при создании цепи переменного тока. В этих случаях трансформаторы преобразуют энергию для более удобной расшифровки параметров или соединения оборудования с разными характеристиками в одну цепь.

Также выделяют измерительную функцию трансформаторов: они служат для запуска электроцепей с повышенным напряжением, к которым требуется подключить измерительные приборы, но не представляется возможным сделать это напрямую. Основная задача таких трансформаторов – передача полученной информации о параметрах тока на приборы для измерительных манипуляций, которые подсоединены к обмотке вторичного типа. Также оборудование дает возможность контролировать ток в цепи: при использовании реле и достижении максимальных токовых параметров активируется защита, выключающая оборудование во избежание перегорания и нанесения вреда персоналу.

Принцип работы

Действие такого оборудования основано на законе индукции, согласно которому напряжение попадает на первичные витки и ток преодолевает создаваемое сопротивление обмотки, что вызывает формирование магнитного потока, передающегося на магнитопровод. Поток идет в перпендикулярном направлении относительно тока, что позволяет минимизировать потери, а при пересечении им витков вторичной обмотки активируется сила ЭДС. В результате ее воздействия в системе появляется ток, который сильнее сопротивления катушки, при этом напряжение на выходной части вторичных витков снижается.

Простейшая конструкция трансформатора, таким образом, включает сердечник из металла и пару обмоток, не соединенных друг с другом и выполненных в виде проводки с изоляцией. В некоторых случаях нагрузка идет только на первичные, а не вторичные витки: это так называемый холостой режим. Если же ко вторичной обмотке подсоединяют оборудование, потребляющее энергию, по виткам проходит ток, который создает электродвижущая сила. Параметры ЭДС обусловлены количеством витков. Соотношение электродвижущей силы для первичных и вторичных витков известно как коэффициент трансформации, вычисляется по отношению их числа. Регулировать напряжение для конечного потребителя энергии можно, изменяя число витков первичной либо вторичной обмотки.

Классификация трансформаторов тока

Существует несколько типов такого оборудования, которые разделяются по ряду критериев, включая назначение, метод монтажа, число ступеней преобразования и иные факторы. Перед тем как выбрать трансформатор тока, требуется учесть эти параметры:

  • Назначение. По этому критерию выделяют измерительные, промежуточные и защищающие модели. Так, устройства промежуточного типа используются при подключении приборов для вычислительных действий в системах релейной защиты и прочих цепях. Отдельно выделяют лабораторные трансформаторы, которые обеспечивают повышенную точность показателей, имеют большое количество коэффициентов преобразования.
  • Способ установки. Существуют трансформаторы для внешнего и внутреннего монтажа: они не только по-разному выглядят, но и имеют различные показатели устойчивости к внешним воздействиям (так, устройства для уличной эксплуатации имеют защиту от осадков и перепадов температур). Также выделяют накладные и портативные трансформаторы; последние имеют сравнительно небольшую массу и габариты.
  • Тип обмотки. Трансформаторы бывают одно- и многовитковыми, катушечными, стержневыми, шинными. Отличаться может как первичная, так и вторичная обмотка, также отличия касаются изоляции (сухая, фарфоровая, бакелитовая, масляная, компаундовая и пр.).
  • Уровень ступеней трансформации. Оборудование бывает одно- и двухступенчатым (каскадным), предел напряжения 1000 В может быть минимальным либо, напротив, максимальным.
  • Конструкция. По этому критерию выделяют две разновидности трансформаторов тока – масляные и сухие. В первом случае витки обмотки и магнитопровод находятся в емкости, содержащей специальную маслянистую жидкость: она играет роль изоляции и позволяет регулировать рабочую температуру среды. Во втором случае охлаждение происходит воздушным путем, такие системы применяют в промышленных и жилых зданиях, поскольку масляные трансформаторы нельзя устанавливать внутри по причине повышенной пожарной опасности.
  • Вид напряжения. Трансформаторы могут быть понижающими и повышающими: в первом случае напряжение на первичных витках снижено, а во втором – повышено.
  • Еще один вариант классификации – выбор трансформатора тока по мощности. Этот параметр зависит от назначения оборудования, количества подключенных потребителей, их свойств.

Параметры и характеристики

При выборе такого оборудования требуется учитывать основные технические параметры, влияющие на спектр применения и стоимость. Главные качества:

  • Номинальная нагрузка, или мощность: подбор по этому критерию можно сделать, воспользовавшись сравнительной таблицей характеристик трансформаторов. Значение параметра определяет другие токовые характеристики, поскольку строго нормируется и служит для определения нормального функционирования оборудования в выбранном классе точности.
  • Номинальный ток. Этот показатель определяет, в течение какого периода прибор может функционировать, не перегреваясь до критичных температур. В трансформаторном оборудовании, как правило, заложен солидный запас по уровню нагрева, при перегрузке до 18-20% работа происходит в нормальном режиме.
  • Напряжение. Показатель важен для качества обмоточной изоляции, обеспечивает бесперебойное функционирование техники.
  • Погрешность. Это явление возникает по причине воздействия магнитного потока, показатель погрешности является разницей между точными данными первичного и вторичного тока. Усиление магнитного потока в трансформаторном сердечнике способствует пропорциональному возрастанию погрешности.
  • Коэффициент трансформации, представляющий собой соотношение тока в первичных и во вторичных витках. Реальное значение коэффициента отличается от номинала на величину, равную степени потерь при преобразовании энергии.
  • Предельная кратность, выраженная в отношении первичного тока в действительном виде к номиналу.
  • Кратность тока, возникающего в витках обмотки вторичного типа.

Определяются ключевые данные трансформатора тока схемой замещения: она позволяет изучить характеристики оборудования в разных режимах, от холостого хода до полной нагрузки.

Главные показатели обозначают на корпусе прибора в виде специальной маркировки. Также она может содержать данные о способе подъема и монтажа оборудования, предостерегающие сведения о повышенном напряжении на вторичных витках (свыше 350 Вольт), информацию о наличии заземляющей площадки. Маркировка преобразователя энергии наносится в виде наклейки или с помощью краски.

Возможные неисправности

Как любое другое оборудование, трансформаторы время от времени выходят из строя, и им требуется квалифицированное обслуживание с диагностикой. Перед тем как проверить устройство, необходимо знать, какие бывают поломки, какие признаки им соответствуют:

  • Неравномерный шум внутри корпуса, потрескивание. Это явление обычно говорит об обрыве заземляющего элемента, перекрытии на корпус с витков обмотки или ослаблении прессовки листов, служащих для магнитопровода.
  • Слишком большой нагрев корпуса, увеличение силы тока на стороне потребления. Проблема может быть вызвана замыканием обмотки из-за износа или механического повреждения изоляционного слоя, частыми перегрузками, возникающими вследствие короткого замыкания.
  • Трещины изоляторов, скользящие разряды. Они появляются при не выявленном до старта эксплуатации производственном браке, набросе инородных предметов и перекрытием между вводом фаз разного значения.
  • Выбросы масла, в ходе которых разрушается мембрана выхлопной конструкции. Проблема объясняется межфазовым замыканием, происходящим по вине износа изоляции, снижением масляного уровня, перепадами напряжения или появлением сверхтоков при условии появления короткого замыкания сквозного типа.
  • Протечки масляной жидкости из-под прокладок или в кранах трансформатора. Основные причины – некачественная сварка узлов, слабое уплотнение, разрушение прокладок или непритертые крановые пробки.
  • Включение реле газозащиты. Такое явление возникает при разложении масла, которое происходит по причине обмоточного замыкания, обрыва цепи, выгорания контактов переключающего устройства или в случае замыкания на трансформаторный корпус.
  • Выключение реле газовой защиты. Проблему вызывает активное разложение масляной жидкости в результате межфазового замыкания, перенапряжения внутренней или внешней части либо вследствие так называемого «пожара стали».
  • Сработавшая дифференциальная защита. Эта неисправность появляется при пробое на вводный корпус, при перекрытии между фазами или в иных случаях.

Чтобы максимально повысить эффективность функциональности прибора, требуется регулярно выполнять поверку, используя тепловизор: оборудование позволяет диагностировать снижение качества контактов и уменьшение рабочей температуры. В ходе поверки специалисты выполняют следующий спектр манипуляций:

    1. Снятие показателей по напряжению и силе тока.
    2. Проверка нагрузки с использованием внешнего источника.
    3. Определение параметров в рабочей схеме.
    4. Вычисление коэффициента трансформации, сравнение и анализ показателей.

Расчет трансформатора

Основной принцип работы этого устройства определяется формулой U1/U2=n1/n2 , элементы которой расшифровывают следующим образом:

  • U1 и U2 – напряжение первичных и вторичных витков.
  • n1 и n2 – их количество на обмотках первичного и вторичного типа соответственно.

Для определения площади сечения сердечника используют другую формулу: S=1,15 * √P , в которой мощность измеряют в ваттах, а площадь – в квадратных сантиметрах. Если сердечник, использующийся в оборудовании, имеет форму буквы Ш, показатель сечения вычисляют для среднего стержня. При определении витков в обмотке первичного уровня применяют формулу n=50*U1/S, при этом компонент 50 не является неизменяемым, в расчетах для профилактики появления электромагнитных помех рекомендуется ставить вместо него значение 60. Еще одна формула – d=0,8*√I , в которой d – это сечение провода, а I – показатель силы тока; она используется для вычисления диаметра кабеля.

Полученные при расчетах цифры доводят до круглых значений (например, расчетную мощность в 37,5 Вт округляют до 40). Округление допустимо исключительно в большую сторону. Все указанные формулы применяют для подбора трансформаторов, работающих в сети 220 Вольт; при сооружении высокочастотных линий используют другие параметры и расчетные методы.

Может быть, кто-то думает, что трансформатор – это что-то среднее между трансформером и терминатором. Данная статья призвана разрушить подобные представления.

Трансформатор – статическое электромагнитное устройство, предназначенное для преобразования переменного электрического тока одного напряжения и определенной частоты в электрический ток другого напряжения и той же частоты.

Работа любого трансформатора основана на явлении , открытой Фарадеем.

Назначение трансформаторов

Разные виды трансформаторов используются практически во всех схемах питания электрических приборов и при передаче электроэнергии на большие расстояния.

Электростанции вырабатывают ток относительно небольшого напряжения – 220 , 380 , 660 В. Трансформаторы, повышая напряжение до значений порядка тысяч киловольт , позволяют существенно снизить потери при передаче электроэнергии на большие расстояния, а заодно и уменьшить площадь сечения проводов ЛЭП.

Непосредственно перед тем как попасть к потребителю (например, в обычную домашнюю розетку), ток проходит через понижающий трансформатор. Именно так мы получаем привычные нам 220 Вольт.

Самый распространенный вид трансформаторов – силовые трансформаторы . Они предназначены для преобразования напряжения в электрических цепях. Помимо силовых трансформаторов в различных электронных приборах применяются:

  • импульсные трансформаторы;
  • силовые трансформаторы;
  • трансформаторы тока.

Принцип работы трансформатора

Трансформаторы бывают однофазные и многофазные, с одной, двумя или большим количеством обмоток. Рассмотрим схему и принцип работы трансформатора на примере простейшего однофазного трансформатора.

Из чего состоит трансформатор? Во простейшем случае из одного металлического сердечника и двух обмоток . Обмотки электрически не связаны одна с другой и представляют собой изолированные провода.

Одна обмотка (ее называют первичной ) подключается к источнику переменного тока. Вторая обмотка, называемая вторичной , подключается к конечному потребителю тока.


Когда трансформатор подключен к источнику переменного тока, в витках его первичной обмотки течет переменный ток величиной I1 . При этом образуется магнитный поток Ф , который пронизывает обе обмотки и индуцирует в них ЭДС.

Бывает, что вторичная обмотка не находится под нагрузкой. Такой режимы работы трансформатора называется режимом холостого хода. Соответственно, если вторичная обмотка подключена к какому-либо потребителю, по ней течет ток I2 , возникающий под действием ЭДС.

Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.

Путем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.

Идеальный трансформатор

Идеальный трансформатор – трансформатор, в котором отсутствуют потери энергии. В таком трансформаторе энергия тока в первичной обмотке полностью преобразуется сначала в энергию магнитного поля, а далее – в энергию вторичной обмотки.

Конечно, такого трансформатора не существует в природе. Тем не менее, в случае, когда теплопотерями можно пренебречь, в расчетах удобно пользоваться формулой для идеального трансформатора, согласно которой мощности тока в первичной и вторичной обмотках равны.

Кстати! Для наших читателей сейчас действует скидка 10% на

Потери энергии в трансформаторе

Коэффициент полезного действия трансформаторов достаточно высок. Тем не менее, в обмотке и сердечнике происходят потери энергии, приводящие к тому, что температура при работе трансформатора повышается. Для трансформаторов небольшой мощности это не представляет проблемы, и все тепло уходит в окружающую среду – используется естественное воздушное охлаждение. Такие трансформаторы называют сухими.

В более мощных трансформаторах воздушного охлаждения оказывается недостаточно, и применяется охлаждение маслом. В этом случае трансформатор помещается в бак с минеральным маслом, через которое тепло передается стенкам бака и рассеивается в окружающую среду. В трансформаторах высоких мощностей дополнительно применяются выхлопные трубы – если масло закипает, образовавшимся газам нужен выход.


Конечно, трансформаторы не так просты, как может показаться на первый взгляд - ведь мы рассмотрели принцип действия трансформатора кратко. Контрольная по электротехнике с задачами на расчет трансформатора внезапно может стать настоящей проблемой. всегда готов оказать помощь в решении любых проблем с учебой! Обращайтесь в Zaochnik и учитесь легко!

При необходимости контроля над токами, протекающими в электрической сети, применяют измерительные трансформаторы тока и напряжения. Подключенные специальным образом подобные устройства снижают измеряемые параметры электрической цепи до величин, подходящих для их измерения. Таким образом, происходит разделение сильноточной цепи от цепи слаботочной. Это необходимо для того, чтобы измерительная или иная аппаратура, в которую включена вторичная обмотка трансформаторов, не вышла из строя.

Индуктивные связи в трансформаторах тока (ТТ)

Согласно основному закону электромагнитной индукции, который обосновал Фарадей, все трансформаторы напряжения (ТН) и тока (ТТ) работают по принципу взаимной индукции. Если расположить на одном замкнутом магнитном сердечнике две обмотки и подключить одну из них к источнику переменного тока, то изменяемый магнитный поток вызовет возникновение электродвижущей силы (ЭДС).

Важно! Такую ЭДС называют индуцируемой. Во второй (вторичной) обмотке устройства в результате взаимодействия магнитных полей также индуцируется ЭДС, и начнёт протекать электрический ток.

Особенности трансформации энергии для ТТ

Чтобы понять, для чего нужны трансформаторы тока, и отличие их от трансформаторов напряжения (ТН), можно рассмотреть их конструкцию. Присутствие в электрических схемах подобных устройств связано с необходимостью трансформировать: понизить или повысить напряжение или ток. Переменное электричество, вырабатываемое генераторами на электростанциях, перед передачей по сетям энергосистемы предварительно подвергается трансформации.

Как работает устройство

Когда стало понятно, что из себя представляет трансформация, пришло время рассмотреть подробнее принцип действия трансформатора тока.

На замкнутый сердечник (магнитопровод), собранный из пластин, надеты две обмотки. Первая катушка включена последовательно в силовую цепь нагрузки. Вторичная катушка своими выводами подключена к измерителям. Сердечник собран из пластин кремнистой стали холодного качения.

К сведению. Учёт электроэнергии выполнен именно таким способом. В однофазные и трёхфазные цепи включены трансформаторы тока, которые позволяют снимать показания по каждой фазе, подавая данные на счётчик.

При прохождении переменного электричества по виткам первой (основной) обмотки вокруг неё образуется переменный магнитный поток Ф1. Поток Ф1, пронизывая все обмотки трансформатора, индуцирует в них ЭДС (Е). В этом случае возникают Е1 и Е2. При подключении в цепь вторичной обмотки любой нагрузки через неё начнётся движение электричества.

Особенности конструкции

Из чего состоят такие трансформаторы? Чем отличается трансформатор тока от трансформатора напряжения? На эти вопросы можно найти ответы в описании особенностей конструкций. Трансформаторы тока, назначение и принцип действия их, подразумевают постоянство некоторых условий:

  • всякий ТТ должен иметь на своём магнитопроводе больше одной обмотки;
  • обмотки, являющиеся вторичными, непременно подключаются к нагрузке (Rн);
  • сопротивление Rн не должно содержать отклонений от заявленных в документах ТТ;
  • первичная обмотка изготавливается как шина, проходящая через сердечник или в форме катушки.

Отсутствие нагрузки по вторичной обмотке не обеспечивает возникновение в сердечнике магнитного потока Ф2, который обладает компенсирующим свойством. Это приводит к повышению температуры сердечника и его расплавлению. Нагрев происходит от того, что Ф1 приобретает слишком высокое значение.

Отклонение сопротивления Rн влияет на погрешность измерений и ухудшает их. В случае превышения сопротивления во вторичной обмотке повышается напряжение U2, и изоляция ТТ может не выдержать. Произойдёт пробой, и прибор выйдет из строя.

Информация. Трансформаторы напряжения (ТН) отличаются от ТТ по способу применения и схеме включения. Они присоединяются параллельно и определены для повышения или понижения напряжения, развязки силовой схемы от схемы управления и контроля. Основной регламент работы ТН близок к режиму холостого хода (х.х.). Это обусловлено тем, что параллельно включенные элементы схемы управления потребляют малый ток, а их Rн большое.

Схемы подключения измерительных ТТ

Монтаж трансформаторов тока выполняют по определённой схеме. Это зависит от напряжения измеряемой сети, а именно:

  • в 3-х фазных сетях с Uн до 1000 В ТТ встраиваются в цепь каждой фазы;
  • в 3-х фазных сетях с Uн 6-10 кВ установка осуществляется на две фазы (А и С).

В первом варианте, в электроустановках (ЭУ), где нейтраль глухозаземлена, концы вторичных обмоток ТТ замыкаются между собой по схеме «звезда».

Во втором случае, в ЭУ с изолированной нейтралью, они присоединяются по схеме «неполная звезда».

Классификация трансформаторов тока

Принцип работы трансформатора тока, а также способы подключения и назначения позволяют провести их разделение по следующим различиям:

  • назначению;
  • типу установки;
  • способу размещения;
  • выполнению первичной обмотки;
  • типу изоляции;
  • рабочему напряжению;
  • количеству ступеней трансформации.

Кроме того, есть другие качества, позволяющие произвести классификацию ТТ. Одна из отличительных черт – специфика конструкции.

По конструктивным особенностям ТТ различаются на:

  • одновитковые;
  • многовитковые;
  • оптико-электронные.

У каждого из этих видов есть типы моделей, которые желательно рассмотреть отдельно.

ТТ катушечного типа

Это одни из несложных трансформаторов тока. Они относятся к ранним ТТ, построенным и продвигавшимся на структуре, где за основу взят силовой трансформатор. Обе обмотки (первая и вторая) набраны на каркас с изоляционными свойствами. Каждая из них представляет собой катушку. Отсюда происходит название. Кроме того, что они компактны и дёшевы в изготовлении, можно выделить недостаток: низкое разрядное напряжение из-за слабой изоляции катушек.

Такая конструкция позволяет использовать их только на напряжение до 3 кВ. Чтобы повысить величину Uразр., приходится увеличивать окно сердечника и отделять первичную обмотку от внутренней поверхности пластин. В образовавшийся в результате этого зазор вставляется изоляционная прокладка, имеющая п-образный вид.

Проходной трансформатор

Устройства распределения (РУ), напряжением от 6 до 35 кВ, подразумевают установку подобных трансформаторов тока. Это многовитковый ТТ, где за базу взята пара проходных изоляторов, соединённых между собой посередине. Такая сборка позволяет проходить через стены и использовать их в закрытых РУ. При этом отпадает необходимость специально задействовать проходной изолятор.

Обмотка, служащая первичной, прокладывается через пустоту, расположенную внутри. Количество витков берётся из расчёта нужных «ампер-витков» для соответствующего класса точности. Под фланцем, который заземлён, помещены втулки. В их средине закреплены магнитопроводы вторичных обмоток, закрытых кожухом.

Внимание! Расположение обмоточного вывода для первичной обмотки приходится на верхнюю плоскость, относительно заземлённого фланца.

Стержневое устройство

Данный тип устройства предназначен для работы с U = 10-20 кВ и Iн = 600 и 1500 А. Такой ТТ относится к проходным одновитковым трансформаторам, имеющим фарфоровую изоляцию. У него токоведущий стержень, пронзающий фарфоровый изолятор, служит первичной обмоткой.

Шинный прибор

Следующая конструкция предназначена для установки в комплектные трансформаторные подстанции (КТП). Они реализовывают передачу информации об измерениях на контрольно-измерительные приборы (КИП). Сигналы от аналогичных ТТ передаются также на схемы защиты и управления.

Преимущества и недостатки

У каждого из перечисленных устройств есть свои плюсы и минусы. Рассматривать их предпочтительнее на разделении: одновитковые и многовитковые модели.

К плюсам одновитковых ТТ можно отнести:

  • простоту устройства;
  • низкую стоимость;
  • малые габариты;
  • устойчивость к токам КЗ (короткого замыкания).

Сюда же можно добавить то, что, изменяя сечение токовода (стержня), добиваются изменения термической устойчивости.

Минусом у таких моделей является невысокая точность при маленьких измеряемых токах.

Что касается многовитковых моделей, то явным положительным моментом является наличие некоторого количества витков в первичной обмотке. Это позволило значительно повысить класс точности измерений. К отрицательным характеристикам относятся:

  • сложность конструкции;
  • удорожание;
  • подверженность первичной обмотки межвитковым перенапряжениям.

При этом сюда же можно отнести низкую устойчивость к токам КЗ.

Параметры трансформаторов тока

Зная, по определению, что эти детали служат для измерений и защитных функций, можно догадаться, что основными их характеристиками будут: KI и класс точности.

Коэффициент трансформации KI

Трансформаторные узлы только выполняют масштабирование параметров электроэнергии, сами её не производят. Для определения величины масштабирования используют коэффициент трансформации.

Отношение между величиной тока (I) или напряжения (U), поданной на вход и снятой на выходе, носит название коэффициента трансформации (Ктр).

В случае преобразования тока речь ведут о:

  • КI – коэффициент трансформации ТТ;
  • I1 – ток на входе;
  • I2 – ток на выходе.

Для ТТ выполняется пропорциональное отношение между первичным и вторичным токами. Это следует из выражений:

  • I1 =I2 / KI;
  • I2 = I1 * KI.

Уточнение. Номинальный Ктр ТТ отображают в виде дробного выражения. В числителе ставится номинальная величина тока, протекающего в первичной катушке, в знаменателе – величина номинального тока во вторичной электрообмотке. Он всегда больше единицы.

Таким образом, номинал измеряемого тока отображает КI ном. Указанные паспортные данные детали (КI = 65/5) обозначают то, что при пропускании через первичную катушку 65 А во вторичной катушке будет проходить ток в 5 А.

При использовании ТТ выполняют снижение тока во вторичной цепи, что даёт возможность обеспечить безопасность эксплуатации. Во вторичную цепь включается не только измерительная аппаратура, фиксирующая значение тока, но и системы защиты или автоматического переключения. В этом случае КI < 1.

Для значений напряжения формула коэффициента иная:

Изменения масштабирования (знак) зависит от величины К. При K>1 трансформатор повышает подводимую электрическую величину, при значении К<1 он её понижает.

Если индуктивная связь между двумя обмотками трансформатора остаётся неизменной, то изменить коэффициент преобразования можно, изменяя отношение количества витков обмоточного провода в катушках W1 и W2. Обращаясь к его формуле:

можно её прировнять к следующему виду:

  • KU – коэффициент трансформации;
  • W2 – количество витков катушки №2;
  • W1 – число витков катушки №1.

Диаметр наматываемого провода зависит от величины тока, планируемого для прохождения через обмотку.

Класс точности

Это главная характеристика ТТ, влияющая на метрологию процесса. Класс точности зависит от двух погрешностей:

  • токовая погрешность (%);
  • погрешность угловая (мин).

Первый вариант, когда действительный КIд., отличается от номинального коэффициента КIн.

Формула погрешности имеет вид:

f = (I2д – I2н)/ I2н * 100%,

  • f – токовая погрешность;
  • I2д – вторичный настоящий (действительный) ток;
  • I2н – вторичный номинальный ток.

Угловая погрешность представляет собой угол между векторами токов: первичного и вторичного. Причём вектор тока вторичного повёрнут на 1800.

Внимание! Данные погрешности мотивированы влиянием намагничивающих токов. Классы точности отбирается из линейки 0,2; 0,2S; 0,5; 0,5S и иных значений по ГОСТ 7746-2015.

Обозначения трансформаторов тока

Буквенно-цифровая маркировка изделий отечественного производства расшифровывается следующим образом:

  • 1 буква Т – трансформатор;
  • 2 буква – тип модели;
  • 3 буква – изоляция.

После букв, через тире, перечисляются:

  • класс изоляции (кВ);
  • исполнение по климатической зоне (буквенная аббревиатура);
  • установочная категория (цифрой);
  • коэффициент трансформации (дробь).

Более точное распознавание маркировки ТТ можно посмотреть в справочной литературе или паспорте прибора.

Назначение и применение

Трансформаторы тока по принципу работы служат для применения и включения в узлы технического и коммерческого учёта электричества. Они рассчитаны на определённый класс напряжения. При определении назначения трансформаторов тока обращают внимание на Ктр и класс точности измерений.

Возможные неисправности

Ошибки при установке и подключении трансформаторов тока, а также неправильно подобранное оборудование вызывают неисправность ТТ.

Важно! Поиск неисправности следует начинать при условии, если вторичный ток ТТ не сочетается с первичным. Слишком низкий ток, не соответствующий заявленному соотношению, говорит о повреждении прибора.

Свидетельствами неисправности трансформатора являются:

  • треск и повышенный шум при работе;
  • появление искр от обмотки на корпусе или на выводах;
  • дым или запах горелой изоляции;
  • чрезмерный нагрев деталей устройства.

Неисправный прибор может давать искажённые результаты измерений, что вызовет ложное срабатывание защитной аппаратуры и неправильный учёт электроэнергии. Периодически на подстанциях проводится поэлементная (пофазная) поверка с замером токов под нагрузкой. Полученные по данным измерений расчётные значения должны совпадать с измеренными величинами на выходе ТТ. Допустима погрешность не более 10%.

Требования к конструкции

При выборе конструкции отталкиваются от того, для чего нужен трансформатор. Зачем устанавливать шинный или проходной ТТ, если напряжение, с которым ему придётся работать, лежит в пределах от 1 до 3 кВ?

К требованиям можно отнести следующие пункты:

  • выбранное устройство должно подходить к условиям эксплуатации и месту установки;
  • при наружном применении выводы трансформатора должны содержать защитные крышки;
  • выводы обмоток обязаны иметь маркировку;
  • наличие мест захвата для подъёма у тяжёлых ТТ (более 50 кг);
  • знак заземления у места присоединения заземляющего проводника.

Выполнение всех контактных зажимов обмоток выполняются согласно требований ГОСТ 10434-82 (при внутренней установке) и ГОСТ 21242-75 (при наружном размещении).

Выбор токового трансформатора для приборов учета

Назначение измерительного трансформатора для коммерции – вести учёт электроэнергии. При выборе подобных моделей обращают внимание на следующее:

  • Uном тт – 0,66 кВ;
  • класс точности – 0,5 S при рыночном варианте, при техническом контроле – 1,0;
  • I1н – номинальный первичный ток.

От номинального первичного тока зависит коэффициент трансформации.

Без трансформаторов тока не обходится ни одна подстанция электросетей. Эти устройства работают для того, чтобы знать и учитывать токовую нагрузку. Они обеспечивают защиту силовых цепей и своевременно подают сигналы обо всех изменениях силы тока в первичной цепи. Правильно подобранный ТТ прослужит без нареканий долгий срок.

Видео

Измерительный трансформатор тока - это устройство, предназначенное для контроля и измерения напряжения, тока, фазы электрического сигнала в контролируемой цепи. Он применяется только в тех случаях, когда нет возможности использовать стандартные приборы для определения величины различных показателей. Этот полезный прибор можно купить по сравнительно небольшой цене или изготовить своими руками.

Общие сведения

Перед тем как определить, для чего нужен трансформатор тока, необходимо подробно изучить его устройство, назначение, разновидности и основные преимущества. Вся эта информация поможет выбрать максимально эффективную модель для каждой конкретной установки.

Назначение и устройство

Измерительный трансформатор используется не так часто, как другие виды этого прибора. Это обусловлено его узкой направленностью, которая позволяет максимально качественно выполнять возложенную на него функцию.

Назначение трансформатора тока может быть разнообразным. Наиболее часто используют устройства такого типа в следующих целях:

Устройство токового трансформатора отличается своей простотой и доступностью. В нём может легко разобраться не только высококвалифицированный электрик, но и новичок. Прибор включает в себя следующие составные части:

  1. Замкнутый сердечник. Он представляет собой объединённый набор пластин, изготовленных из листовой электротехнической стали.
  2. Первичная обмотка, имеющая стандартное количество витков.
  3. Одна или две вторичные обмотки.

Основные параметры

Технические характеристики всех измерительных трансформаторов тока описываются несколькими основными параметрами. Они обязательно указываются в паспорте устройства или другой прилагаемой документации. Специалисты рекомендуют по этим показателям выбирать модель прибора, которую мастер может установить на ту или иную конструкцию. Главные параметры:

  1. Номинальное напряжение. Величина этого показателя для каждой конкретной модели трансформатора указывается в техническом паспорте. В зависимости от разновидности прибора она может составлять от 0,66 до 1150 кВ.
  2. Номинальный ток первичной обмотки. Этот важный параметр можно найти в технической документации и литературе. Некоторые производители указывают его в паспорте. Величина тока зависит от исполнения прибора и варьируется от 1 до 40 тыс. ампер.
  3. Номинальный ток во вторичной обмотке. В отличие от предыдущего показателя, этот имеет стандартные значения (1 или 5 ампер). Трансформаторы, которые изготавливаются по индивидуальному заказу, могут иметь параметр, который будет равен 2 или 2,5 А.
  4. Коэффициент трансформации. Он представляет собой значение, показывающее соотношение показателей тока в первичной и вторичной обмотках. Профессионалы различают 2 разновидности этого коэффициента (действительный и номинальный) и используют их в различных расчётах.

Преимущества и недостатки

Для того чтобы лучше понять принцип действия и назначение трансформаторов тока, необходимо рассмотреть все достоинства и недостатки этого устройства. Положительных сторон намного больше, поэтому приборы пользуются популярностью у потребителей.

Несмотря на большое количество достоинств, у измерительных трансформаторов есть и несколько недостатков. Их обязательно нужно брать во внимание перед покупкой устройства и началом его использования. В противном случае можно столкнуться с различными трудностями, которые осложнят работу прибора и увеличат вероятность возникновения поломок.

Среди наиболее значимых недостатков выделяются такие:

  • низкая чувствительность при малом токе;
  • зависимость точности показаний от внешних магнитных полей;
  • большая чувствительность к колебаниям тока;
  • высокое потребление электроэнергии самим устройством.

Разновидности конструкций

Измерительные токовые трансформаторы выпускаются различных типов. Все они имеют одно и то же назначение, но отличаются составными элементами и принципом действия. Каждая разновидность применяется для достижения определённых целей, что позволяет выбирать оптимальный вариант для каждого случая.

Катушечного типа

Этот вид измерительных трансформаторов считается наиболее простым по конструкции. Свою популярность он приобрёл ещё в советские времена, когда не было более качественных и эффективных устройств. Состоит катушечный прибор из следующих элементов:

Такие трансформаторы имеют небольшие размеры и приемлемую цену, которая обусловлена возможностью механизации обмоточных работ. Несмотря на это, приборы имеют несколько значимых недостатков, которые снижают их популярность среди потребителей.

К ним относят:

  • низкое разрядное напряжение, которое становится следствием слабой катушечной изоляции;
  • возможность использования только при небольших номинальных напряжениях (не более 3 кВ);
  • способность работать только при пониженных требованиях к электрической прочности.

Эти устройства считаются наиболее часто используемыми. Они нашли широкое применение в различных распределительных приборах, рассчитанных на напряжение от 6 до 35 кВ. Их устройство не отличается особой сложностью.

Конструкция состоит из таких частей:

  • литой эпоксидный корпус;
  • магнитопровод;
  • первичная обмотка;
  • вторичная обмотка.

Трансформаторы этого типа ценятся за то, что дают возможность в закрытых распределительных устройствах сэкономить проходной изолятор. Среди других преимуществ прибора выделяют такие:

  • малые габариты;
  • высокая электродинамическая стойкость.

Стержневое устройство

Стержневые трансформаторы часто называют одновитковыми. Главная их особенность - увеличение точности при повышении силы тока и уменьшение - при понижении. Она обусловлена тем, что первичная обмотка только один раз проходит через отверстие сердечника, что приводит к численному равенству количества ампер-витков и номинального тока.

Устройство состоит из следующих деталей:

  • железный магнитопровод (сердечник);
  • стержень проходного изолятора;
  • вторичная и первичная обмотка.

В стержневых трансформаторах токах сердечники могут иметь круглую или прямоугольную форму. От этого будет зависеть длина магнитного пути, которая должна иметь определённое значение для каждого конкретного случая. В большинстве ситуаций специалисты рекомендуют использовать круглые сердечники, которые снизят магнитные потери и увеличат эффективность устройства.

Шинный прибор

Шинные трансформаторы представляют собой изделия, в конструкцию которых входят сердечники со вторичной обмоткой, а первичная - отсутствует. В главной изоляции прибора предусмотрено специальное отверстие, через которое пропускается шина распределительного устройства, выполняющая роль первичной обмотки.

Эта разновидность трансформатора очень похожа на стержневую. Лишь при малых показаниях напряжения через отверстие в сердечнике прокладывают несколько витков проводника, что даёт возможность получить многовитковую конструкцию прибора.

Основными преимуществами шинного трансформатора считаются:

  • простота конструкции;
  • лёгкость проведения монтажных, ремонтных и профилактических работ;
  • возможность использовать устройство не только при малых номинальных токах, но и при высоких (более 2 тыс. ампер);
  • высокая электродинамическая стойкость, обусловленная устойчивостью шинной конструкции.

Схемы подключения

Для того чтобы устройство эффективно работало и качественно выполняло возложенные на него функции, нужно правильно его подключить. Для этого следует руководствоваться одной из стандартных схем, позволяющих удовлетворить требования владельцев оборудования. Только в этом случае можно добиться желаемого результата и выполнить работу за максимально короткий промежуток времени.

Основные схемы соединения трансформаторов и обмоток реле:

Правила обслуживания

В большинстве случаев срок службы измерительного токового трансформатора составляет около 20 лет. Чтобы продлить этот срок на 10 и более лет, необходимо правильно обслуживать устройство и в нужное время проводить профилактические мероприятия.

Основные требования , которые нужно соблюдать для увеличения срока службы трансформатора:

Измерительный токовый трансформатор - это полезное устройство, позволяющее измерять и регулировать различные параметры системы. При правильном выборе прибора, его установке и соблюдении всех рекомендаций профессионалов можно продлить срок службы аппарата, а также снизить вероятность появления каких-либо проблем.

Загрузка...